

Forest Service

Southern Forest Experiment Station

New Orleans, Louisiana

Research Paper SO-219 November, 1985

Predicting Stand and Stock Tables from a Spacing Study in Naturally Regenerated Longleaf Pine

Robert M. Farrar, Jr.

SUMMARY

A prediction system is presented whereby stand and stock tables are calculated for young natural longleaf pine stands of varying initial density. Tables can be output for stand conditions of 10 to 20 years of age, 300 to 1,500 initial trees per acre (at age 10), and 70 to 80 feet in site index (index age 50). The system also allows one to translate from density expressed as trees per acre at an age between 10 and 20 years to basal area at age 20 and thereby gain entry to another stand volume prediction and projection system for thinned natural longleaf pine that is operable for stand ages of 20 years and older.

Predicting Stand and Stock Tables from a Spacing Study in Naturally Regenerated Longleaf Pine

Robert M. Farrar, Jr.

INTRODUCTION

Stand volume and volume growth prediction systems for natural, even-aged stands of southern pines usually use basal area as the stand density variable, and predictions usually are not feasible before about 20 years of age. Basal area is a very practical density measure for stands about this age or older but not very informative or useful if stands are younger, especially if many of the trees are less than 4-1/2 feet tall. Since intensive management calls for volume and growth information at these younger ages, methods are needed to translate from one density measure at an early age (such as trees per acre) to basal area at a later age. The following paper outlines a system developed to do this for young stands of natural longleaf pine (*Pinus palustris Mill.*) by predicting stand and stock tables.

METHODS

Study Area

The data were gathered from a natural stand spacing study initiated in the winter of 1967-68 on the Escambia Experimental Forest in south Alabama. The study area was a 40-acre stand of dense, evenaged young longleaf pines, resulting principally from seed-tree regeneration in 1957 and 1958. Seed-trees were removed in 1961. In 1963, stand density ranged from about 3,000 to 8,000 trees per acre and averaged about 6,000. In 1967, when the study was installed, the stand was 9 to 10 years old from seed. Tree sizes then ranged from grass-stage seedlings to trees about 3 inches in d.b.h. and 20 feet tall. Dominant and codominant trees averaged 6 to 10 feet in height. The soil of the area is Alaga loamy sand, which is common on ridges and upper slopes in the rolling middle Gulf Coastal Plain. At about age 20, the site index (Farrar 1973) estimated on study plots ranged from 71 to 86 feet at 50 years and averaged 79 feet.

Treatments

Five tree-frequency densities were replicated three times on 1/5-acre permanent plots with 1/2-chain isolation strips in a completely randomized design. Residual densities of exactly 300, 600, 900, 1,200, and 1,500 trees per acre were initially established by manually cutting the trees that appeared poorest in vigor. No record was kept of the numbers of trees removed. All hardwoods with d.b.h. ≥ 1 inch were killed during the summer of 1968, and the study area was prescription burned in the winters of 1973–74, 1975–76, and 1977–78. No subsequent thinnings have been made.

Inventory

All trees on the 1/5-acre net plot were positively and permanently identified. Their d.b.h. was measured to the nearest one-tenth inch on all trees taller than breast height, and a systematic sample was made of total heights and heights to the live crown base by measuring these heights on every sixth tree in each 1-inch d.b.h. class (including the zero class) to the nearest foot. At least 2 trees were measured per d.b.h. class, if available, and at least 10 were measured per plot. Inventories were repeated at 2-year intervals and occurred in the dormant season. In the winter of 1973-74, at about stand age 15 years, all dominant and codominant sample trees were bored at 4 feet to determine age (age = ring count + 7 years). At least five trees were aged per plot. The mean age determined in this fashion agreed closely with the historical records of reproduction on the area. The last inventory reported on herein was made in the winter of 1977-78.

Analysis

Rather than analyze the stand characteristics and volume production data to simply detect any significant discrete differences among treatments, it was decided to employ techniques used to generate pre-

Farrar is a Principal Mensurationist at Forestry Sciences Laboratory, Monticello, AR, Southern Forest Experiment Station, Forest Service—USDA, in cooperation with the Department of Forestry and the Arkansas Agricultural Experiment Station, University of Arkansas at Monticello.

dicted stand and stock tables for unthinned pine plantations in relation to stand age, site index, and density. This would allow predictions for a range of stand conditions (bounded by the limits of the data) rather than simple treatment means. This approach necessitated the development of the following six groups of prediction system components by site index and age at the stand level and/or at the d.b.h. class level.

- 1. A stand-level predictor (eq. 3a)1 for mean dominant height (dominant and codominant trees) that uses a published site-index function to widen its utility. The published site-index function chosen (Farrar 1973) was the one for natural longleaf from USDA Miscellaneous Publication 50 (U.S. Forest Service 1976), hereafter called MP50, because the trends of dominant height observed in the study followed this MP50 function better than other available site-index functions. A given MP50 site-index value at index age 50 for a stand is translated to MP50 site index at index age 20 (eq. 1). This latter value is used with the dominant height function (eq. 3d) developed from study data to extend the dominant height estimates from age 20 down to age 10 (eq. 3a). The MP50 function could not be used alone because it does not allow predictions below about age 15, and the study function could not be used alone because its limited data base does not allow it to be a generally suitable siteindex function.
- 2. A stand-level function that predicts the survival of all trees (eq. 4) and one that predicts the number of surviving trees 1 inch d.b.h. and larger from age 10 into the future by 1-year increments up to age 20 (eq. 5). For other species, a predictor for trees 1 inch d.b.h. and larger would be the only one needed. But, since longleaf has a grass-stage and trees can remain in this stage for many years, the first predictor is also necessary here. These functions are similar to a model presented by Hamilton (1974).
- 3. A mean total height predictor for each 1-inch d.b.h. class (eq. 6a). This function essentially predicts a proportion for each d.b.h. class that modifies stand mean dominant height. This function is similar to the model presented by Clutter and Belcher (1978).
- 4. A mean crown ratio predictor for each 1-inch d.b.h. class (eq. 7a). The underlying model is identical in form to the one in eq. 6a, but employs stem length (or height to the live crown base) as the dependent variable.
- 5. A function that predicts the number of trees in each 1-inch d.b.h. class (eq. 8a). This predictor utilizes the Weibull cumlative density function and estimates of the "b" and "c" parameters that are predicted by the stand variables age, dominant height, and trees per acre (eq. 8b, 8c). The "a" parameter was fixed at 0.55

¹Numbers and letters refer to equations presented in Appendix A.

because it is possible for any natural longleaf stand aged 10 through 20 years to have a tree in the first 1-inch d.b.h. class. The "b" and "c" parameter predictors were developed using the fitted values of "b" and "c" from a maximum-likelihood program developed for this purpose at the Southern Forest Experiment Station (Bailey 1974).

6. A set of tree volume-defining functions (Farrar 1981) for natural longleaf pines (eq. 10-15).

All functions were fitted using ordinary least squares multiple linear regression.

RESULTS AND DISCUSSION

All of the above groups and component parts are presented in Appendix A, along with certain relative statistics for each critical component in Appendix B.

Also, the components have been inserted into a BASIC computer program (Appendix C) that allows generation of stand and stock tables for stands having the specifications and limits shown in table 1.

Appendix D shows example output from this program, stand and stock tables for ages 10, 15, 20; site index 70 and 80; and 300, 600, 900, 1,200, and 1,500 initial trees per acre (all trees, at age 10). By modifying a few program lines, the program can predict tables for other combinations of stand initial and final age, site index, and initial density within the above limits on minimum and maximum values given in table 1.

Several trends are evident upon inspection of these Appendices. Survival of all trees (TSO) is inversely related to initial density and is very good for the 10-year period studied. The poorest survival was 88 percent at age 20 for 1,500 initial trees per acre at age 10 and site index 70. Similarly, the poorest survival on site index 80 was 95 percent for otherwise similar conditions. These trends probably hold through age 20, but beyond that one would expect survival to become relatively poorer for site index 80 as competition becomes more intense on these better sites (Dell and others, 1979).

The modal d.b.h. class advances with age and the advance is most rapid for the lowest initial stand den-

Table 1.—Specifications and limits of stand and stock tables

Stand variable	Minimum value	Maximum value
Age (years)	10	20
Site index (feet)		
(MP50, index		
age = 50)	66	85
Initial number of		
trees per acre		
at age 10	300	1,500

sity. This effect is shown in figure 1 for initial densities of 300 and 1,500 trees on site index 70. Increasing site index accelerates the advance.

The number of trees per acre 1 inch d.b.h. and larger (TS1) is directly related to initial density, increases with age, and approaches and asymptote or declines slightly due to mortality in the higher densities (fig. 2). Increasing site index tends to increase the number of such trees at any age for any initial density.

The quadratic mean d.b.h. is negatively related to density, appears to approach an asymptote with density, and increases positively with age (fig. 3). The effect of site index is positive. The arithmetic mean d.b.h. response is similar but the values are, of course, smaller.

Total basal area per acre is positively related to initial density and age and appears to approach an asymptote with density (fig. 4). Over the 10-year period, the growth rate accelerated during the last 5 years for the lowest initial density and decelerated for the highest. The effect of site index is positive.

Mean crown ratio has a differential response to initial density and age (fig. 5). At the three lower densities it increases to a peak at middle ages and then declines with age, but at the two higher densities it generally declines slowly to the middle ages and then declines more rapidly. It appears to approach an

Figure 1.—Predicted d.b.h. distributions for 300 (solid line) and 1,500 (dashed line) initial trees per acre at ages 10, 15, and 20 years, site index 70.

Figure 2.—Predicted number of trees per acre $(d.b.h. \ge 0.6")$ at ages 10 through 20 years by initial stand density at age 10, site index 70.

Figure 3.—Predicted quadratic mean stand d.b.h. at ages 10 through 20 years by initial stand density at age 10, site index 70.

Figure 4.—Predicted total stand basal area per acre at ages 10 through 20 years by initial stand density at age 10, site index 70.

Figure 5.—Predicted stand mean crown ratio percentage at ages 10 through 20 years by initial stand density at age 10, site index 70.

asymptote with density. The general effect of increasing site index is to lower the crown ratio about 5 to 10 percentage points.

The total cubic-foot volume, inside bark, per acre (TVI) response is similar to the response of total basal area to age and initial density except that the growth rate appears to be accelerating for all densities over the 10-year period (fig. 6); probably because height growth is overcoming any reduction in basal area growth. The effect of site index is positive. The greater the age, site index, and initial density; the greater the total volume.

Merchantable cubic-foot volume, inside bark (VI43), is zero for all densities and both sites at age 10. By age 15, the 900-trees-per-acre density has the most volume on site index 70 (fig. 7) and 80. By age 20,

volume has increased at an increasing rate such that the 1,200-trees/acre density has the most volume on site index 70 and the 1,500-trees/acre density on site index 80.

The merchantable mean annual volume (VI43) increments to age 20 are not striking, but the responses between age 10 and 20 are impressive, particularly for the last 5 years. For the period age 10 to age 20, the maximum predicted growth rates are 61.2 cubic feet/acre/year for site index 70 and 1,200 initial trees. For site index 80, the maximum is 101.5 cubic feet for 1,500 initial trees. Assuming 80 cubic feet/cord, these figures translate to 0.77 and 1.27 cords/acre/year. For the last 5 years (age 15 to 20), the maximum rates are 99.7 and 170.5 cubic feet/acre/year for site indices 70 and 80, respectively, and both for initial densities of 1,500 trees. These figures translate to 1.25 and 2.13 cords/acre/year.

If maximum stand merchantable cubic-foot volume production is desired, the results through age 20 do not suggest any practical benefit from having more than about 900 to 1,200 trees per acre at age 10 since these densities produced maximum or near-maximum volumes. However, if maximum total cubic-foot volume is desired, the highest initial density (1,500) TSO₁₀) is indicated. This information supports earlier conclusions (Farrar 1974) that to maximize early merchantable cubic-foot yields a density range of 500 to 1,000 established trees per acre appeared optimal and that, for this purpose, precommercial thinning should be considered only if stand density exceeded 1,000 crop seedlings at age 5 to 10 years. As the study continues, it may develop that a medium initial TSO density will maximize early sawtimber volumes also.

Figure 6.—Predicted stand total cubic-foot volume, inside bark, per acre at ages 10 through 20 years by initial stand density at age 10, site index 70.

Figure 7.—Predicted stand merchantable cubic-foot volume, inside bark, per acre at ages 10 through 20 years by initial stand density at age 10, site index 70.

Preliminary results from this spacing study have been reported in two previous publications (Farrar 1974, 1979a). At the time of the first (Farrar 1974), neither the ages from seed (from increment borings) nor the site index were determinable. Age, although not specifically stated, was age from seed-tree removal which is 2 to 3 years younger than age from seed. Average site index was estimated in surrounding 60-year-old stands on similar soils to be about 70 feet. If the data in Farrar (1974) are updated to reflect the average age from seed (15 to 16 years) and the average site index (MP50) of about 80, the results are comparable to those presented herein.

In the second publication (Farrar 1979a) the ages are from seed but the average site index was estimated to be in the 70 class (about 75) by the site-index function in Farrar (1979b). If this site index is translated to MP50 site index, the value is about 80. Then, with due allowance for a different survival function in Farrar (1979a), the results are comparable. Since the results reported in these two previous publications were preliminary, they can be regarded to be superseded by the results reported herein.

To see, on the average, how well the prediction system reproduces certain observed stand values for the 15 plots at nominal ages 10, 15, and 20 years; the mean difference (d), percent mean difference (%d), root mean square difference (RMSd), and root mean square percent difference (RMS%d) were calculated

and are presented in table 2. The latter two measures are comparable to absolute (algebraic sign ignored) values. The "observed" values for each plot at each age were determined by the procedures given by Farrar (1979b) for plot inventory summary. Briefly, observed volumes were obtained by fitting a total height function in terms of d.b.h. for each plot, using this function in conjunction with the tree volume formulae presented herein to estimate a volume for every tree on the plot, and summing tree volumes to obtain plot volumes. Observed trees per acre and basal area were the actual values per plot. Observed ages were the actual mean age at nominal ages 10, 15, and 20 years for each plot.

Predicted plot values were obtained by using the following inputs to the appended program:

- a. Site index (MP50) observed at nominal age 20 on each plot.
- b. The actual plot age at nominal age 20 and backdated 5 and 10 years to obtain estimates at nominal ages 15 and 10.
- c. The number of trees at the age in b., above, were obtained via the survival function (eq. 4) by starting with the treatment densities at the backdated age at nominal age 10 and projecting forward 5 and 10 years.

The results of this exercise (table 2) suggest that the predictions improve with time and that all are within usable limits. At ages 15 and 20, they are comparable to results from other studies of natural evenaged southern pine growth and production (Farrar 1979b, Murphy and Sternitzke 1979, Murphy and Beltz 1981). At age 10, the percentage differences are comparatively large but small in real terms. This is not surprising because at this young age there is considerable variability in the stand taller than breast height. Later, as more of the stand passes the breastheight threshold, stand traits become more predictable.

If stand and stock tables are desired for conditions other than those shown in the Appendix, but within the study limits, the program (Appendix B) can be modified to provide output for any integer age between 10 and 20 years, any site index in the 70 and 80 classes, and any initial integer number of trees per acre between 300 and 1,500. The desired input values are specified in line 80, and lines 120, 130, and 140 are modified as needed. For example, if annual output is desired for site index 75 at ages 13 through 17 for 750 initial trees per acre at age 13, the input would be 75, 75, 13, 17, 750, 750 and line 140 would be altered to read: FOR A = A1 to A2 STEP 1.

If for some reason the MP50 site-index function is not deemed appropriate, but the rest of the process is considered suitable, some other site-index function thought to be more appropriate can be solved as a dominant-height function at age 20 and substituted in line 280.

Table 2.—Goodness of fit" statistics for the stand and stock table prediction system¹

Predicted value	n	Obs	d	%d	RMSd	RMS%d
			Age 10			
TS1 (no.)	15	349.7	-5.07	5.2	63.73	24.4
B (ft ²)	15	3.2	0.08	6.4	0.76	26.1
TVO (ft ³)	15	28.6	0.05	5.4	7.00	27.1
TVI (ft ³)	15	14.8	0.15	5.9	3.93	28.7
VO43 (ft ³)						
VI43 (ft ³)		• • • • •		• • • • •		
			Age 15			
TS1	15	830.7	30.13	0.04	74.66	7.4
В	15	43.1	-0.49	-0.8	4.31	10.3
TVO	15	690.7	-23.85	-4.3	83.09	12.3
TVI	15	453.3	-15.66	-3.2	55.73	12.6
VO43	15	347.3	-12.55	-3.0	54.05	16.2
VI43	15	233.3	-6.7	-2.3	36.72	16.5
			Age 20			
TS1	15	832.0	30.20	3.8	61.26	6.4
В	15	68.0	-0.71	-0.6	4.51	6.9
TVO	15	1454.8	-4.13	0.1	115.09	8.6
TVI	15	1012.0	-4.43	-0.01	81.71	8.8
VO43	15	1088.1	-23.26	-1.4	102.84	9.8
VI43	15	767.6	-16.4	-0.4	72.97	9.8

 $^{1}n = number of observations$

 $y_i = ith observed value$

$$\hat{y}_i = ith predicted value$$

$$\overline{Obs} = \left(\sum_{i=1}^{n} (y_i)\right) / n$$

$$\overline{d} = \left(\sum_{i=1}^{n} \; (\hat{\mathbf{y}}_i - \mathbf{y}_i)\right)\!\!/\!\! n$$

$$\overline{\%d} = \left(\sum_{i=1}^n ((\hat{y}_i - y_i)/y_i)/n\right) * (100)$$

$$RMSd = \sqrt{\left(\sum_{i=1}^{n} (\hat{y}_i - y_i)^2\right)/n}$$

RMS%d =
$$\sqrt{\left(\sum_{i=1}^{n} ((\hat{y}_i - y_i)/y_i)^2\right)}/n*(100)$$

..... = no data observed or predicted

Besides providing estimates of the production in 10to 20-year-old longleaf stands, this system can provide entry to other growth and production prediction systems that usually start at about age 20. For example, assume that we have a longleaf stand at age 10 that has 1,200 trees per acre and a site index of 70 feet (MP50) and we would like to estimate its volume at age 25. At age 20, Appendix C shows this stand should have a dominant height of 36.4 feet, 68.9 square feet of basal area (B), and the following cubic-foot volumes per acre: total, inside bark (TVI) = 930; merchantable, inside bark (VI43) = 612. The indicated merchantable periodic annual increment from age 15 to 20 is 97.8 cubic feet. Using the functions in a recently published system for volume growth and production prediction for thinned natural longleaf (Farrar 1979b) that uses some of the same tree volume-defining functions but a different site-index function, the following values are obtained at age 20. The 36.4-foot dominant height translates to a site index (Farrar 1979b) of 65.6 feet and the cubic-foot colume estimates are TVI = 914 and VI43 = 661. These are within ± 2 to 8 percent of the above values. At age 25, the predictions from the functions in Farrar (1979b) are B = 99 square feet/acre, TVI = 1,639, and VI43 = 1,390.

The estimated average annual growth from age 20 to 25 is 6 square feet of basal area and 145.8 cubic feet of merchantable volume or 1.82 cords. The merchantable mean annual increments at ages 20 and 25 (33.1 and 55.6 cubic feet) suggest that the periodic annual cubic-foot volume increment has not peaked for this stand by age 20.

LITERATURE CITED

Bailey, R. L. 1974. Computer programs for quantifying diameter distributions with the Weibull Function. For Sci. 20: 229.

Clutter, J. L., and D. M. Belcher. 1978. Yield of siteprepared slash pine plantations in the lower coastal plain of Georgia and Florida. In: Proc. of IUFRO symposium on growth models for long term forecasting of timber yields and forest resources management. Va. Poly. Inst., Blacksburg, Va. p. 53-70.

Dell, T. R., D. P., Feduccia, T. E. Campbell, W. F. Mann, Jr., and B. H. Polmer. 1979. Yields of unthinned slash pine plantations on cutover sites in the West Gulf region. U.S. Dep. Agric., For. Serv. Res. Pap. SO-147. South. For. Exp. Stn., New Orleans, La., 84 p.

Farrar, R. M., Jr. 1973. Southern pine site-index equations. J.For. 71: 696-697.

Farrar, R. M., Jr. 1974. Growth and yield of young longleaf pine. In Proc.: Symp. on mangt. of young pines. (Alexandria, La., Oct.: Charleston, S.C., Dec. 1974), p. 276–287. U.S. Dep. Agric., For. Serv. Southeast. Area, State and Priv. For., South. and Southeast. For. Exp. Stns.

Farrar, R. M., Jr. 1979a. Volume production of thinned natural longleaf. In Longleaf pine work-

shop (October 17-19, 1978), p. 30-53. Southeast. Area, State and Priv. For., South. For. Exp. Stn., Ala. For. Comm., Ala. Ext. Serv., Mobile, Ala.

Farrar, R. M., Jr. 1979b. Growth and yield predictions for thinned stands of even-aged natural longleaf pine. U.S. Dep. Agric., For. Serv. Res. Pap. SO-156. South. For. Exp. Stn., New Orleans, La., 78 p.

Farrar, R. M., Jr. 1981. Cubic-foot volume, surface area, and merchantable height functions for long-leaf pine trees. U.S. Dep. Agric., For. Serv. Res. Pap. SO-166. South. For. Exp. Stn., New Orleans, La., 7 p.

Hamilton, D. A., Jr. 1974. Event probabilities estimated by regression. USDA For. Serv. Res. Pap. INT-152, Intermountain Forest and Range Experiment Station, 18 p.

Murphy, P. A., and R. C. Beltz. 1981. Growth and yield of shortleaf pine in the West Gulf Region. U.S. Dep. Agric., For. Serv. Res. Pap. SO-169. South. For. Exp. Stn., New Orleans, La., 15 p.

Murphy, P. A., and H. S. Sternitzke. 1979. Growth and yield estimation for loblolly pine in the West Gulf. U.S. Dep. Agric., For. Serv. Res. Pap. SO-154. South. For: Exp. Stn., New Orleans, La., 8 p.

U.S. Forest Service. 1976. Volume, yield, and stand tables for second-growth southern pines. 1929 (Rev. 1976). USDA Misc. Publ. 50. 202 p.

Appendix A—System Predictor Groups and Components

(1)
$$H_{20} = (S_{50})(10)^{\{g(20) - g(50)\}}$$

(2)
$$S_{20} = (H_{20})[\exp\{f(20) - f(20)\}] = H_{20}$$

(3a)
$$HD1_A = (S_{20})[exp\{f(A) - f(20)\}]$$

where: H_20 = mean height of dominant stand at age 20, predicted from MP50 dominant-height function (Farrar 1973), feet

 S_{50} = site index, index age 50 years, feet $(65 < S_{50} \le 85)$

(3b) $g(A) = -11.870(1/A) + 1263.79(1/A)^3 - 12409.5(1/A)^4 (Farrar 1973)$

 $S_{20} = site index, index age 20 years, feet$

(3c) $f(A) = 51.5672(1/A) - 976.490(1/A)^2 + 3836.84(1/A)^{3}$

(3d) $ln(HD1_A = 3.08908 + 51.5672(1/A) - 976.490(1/A)^2 + 3836.84(1/A)^3$

HD1_A = predicted mean height of dominant stand at age A, feet (A, here, = 10, 11, - - - 19, or 20).

Total tree frequencies per stand at age A

The number of surviving trees per acre is predicted in an iterative fashion by a modified form of a function presented by Hamilton (1974).

(4)
$$TSO_{A+1} = TSO_A/[0.99999 + exp{-20.964} + 1.1808(A) - 0.25569(HD1_A) + 0.0031657(TSO_A)}]$$

where: TSO_A = number of surviving trees per acre (all) at age A years

 TSO_{A+1} = number of surviving trees per acre (all) at age (A + 1) years. Note that TSO_A + 1 becomes TSO_A for each new iteration of this function. Minimum A = 10, maximum (A + 1) = 20, minimum TSO_{10} = 300, maximum TSO_{10} = 1,500.

¹From the fitted function:

The number of surviving trees in the 1-inch class and larger is predicted by:

(5)
$$\begin{split} TS1_A &= TSO_A/[0.99999 + exp\{3.7052\\ &- 2.5068(HD1_A/A)\\ &- 94.772(HD1_A/TSO_A)\}] \end{split}$$

where: $TS1_A$ = number of surviving trees per acre (d.b.h. > 0.6 inches) at age A years.

Mean height for a given d.b.h. class at age A

(6a)
$$H1_{iA} = (HD1_A)[exp\{b_{0A} + b_{1A}(1/D_i)\}]$$

where: $H1_{iA}$ = predicted mean tree total height for the ith 1-inch d.b.h. class at age A, feet

(6b)
$$b_{0A} = 0.23727 + 5.9139/HD1_A$$

$$\begin{array}{ll} (6c) & b_{1A} = -0.19070 - 0.012645 (TS1_A/A) \\ & -0.11953 (HD1_A) + 0.0010798 (TS1_A) \\ & +0.0016258 (HD1_A)^2 \end{array}$$

D_i = midpoint of the ith 1 inch d.b.h. class, inches.

Mean crown ratio for a given d.b.h. class at age A

(7a)
$$CR_{iA} = \{(H1_{iA} - SL_{iA})/H1_{iA}\}(100)$$

where: CR_{iA} = mean crown ratio for the ith 1-inch d.b.h. class at age A, percent

(7b)
$$SL_{iA} = (HD1_A)[exp\{c_{0A} + c_{1A}(1/D_i)\}]$$

where: SL_{iA} = predicted mean tree height to the live crown base for the ith 1-inch d.b.h. class at age A, feet

$$\begin{array}{ll} (7c) & c_{0A} = 3.4392 - 0.54950(A) \\ & + 0.045001(HD1) + 0.00057003(A^3) \\ & + 0.000000048139(A^3)(TS1_A) \end{array}$$

$$\begin{array}{ll} \text{(7d)} & c_{1A} = -0.53734 - 0.0025185(A^2) \\ & + 0.000018202(A)(TS1_A). \end{array}$$

Tree frequencies by d.b.h. class at age A

$$(8a) TS1_{iA} = N2_A - N1_A$$

where:
$$N1_A = (TS1_A)[1 - exp\{-((D_i - a)/b_A)^{cA}\}]$$

$$N2_A = (TS1_A)[1 - exp\{-((D_i + 1-a)/b_A)^{cA}\}]$$

and

TS1_{iA} = number of surviving trees per acre (d.b.h. > = 0.6 inch) in the ith 1-inch d.b.h. class at age A years.

$$a = 0.55$$

$$\begin{array}{ll} (8b) & b_{A} = -0.78012 \\ & -0.000084899 (HD1_{A}) (TS1_{A}) \\ & +0.17355 (HD1_{A}) \\ & +0.00087836 (TS1_{A}) \\ & -0.0000013083 (HD1_{A})^{2} (TS1_{A}) \\ & +0.000000010321 (HD1_{A})^{2} (TS1_{A})^{2} \end{array}$$

(8c)
$$c_{A} = 0.80699 - 0.00025619(HD1_{A})(TS1_{A}) + 0.00000010200(HD1_{A})(TS1_{A})^{2} + 0.16045(HD1_{A}) + 0.00096973(TS1_{A}).$$

Basal area per acre by d.b.h. class at age A

(9)
$$B_{iA} = (TS1_{iA})(\pi/576)(D_i)^2$$

where: B_{iA} = basal area per acre in the ith 1-inch d.b.h. class at age A, square feet.

Mean tree volume for a given d.b.h. class at age A

(10)
$$TVI_{iA} = 0.00535 + 0.0021971(D_i)^2(H1_{iA})$$

where: TVI_{iA} = tree volume in cubic feet, inside bark, from a 0.2-foot stump to a zero-inch top d.o.b., d.b.h. > = 0.6 inch

(11)
$$TVO_{iA} = (TVI_{iA})\{1 + (10^{b_0})(TVI_{iA})^{b_1}\}$$

where: TVO_{iA} = same specifications as TVI_{iA} except outside bark

$$b_0 = -0.30925$$

$$b_1 = -0.21895$$

(12)
$$VI42_{iA} = (TVI_{iA})/\{1 + (10^{b02})(TVI_{iA})^{b12}\}$$

where: VI42_{iA} = tree merchantable volume in cubic feet, inside bark, from a 0.2-foot stump to a 2-inch top d.o.b., d.b.h. > = 3.6 inches

$$b_{02} = -1.2415$$

$$b_{12} = -1.2107$$

$$(13) \qquad VO42_{iA} = (VI42_{iA})\{1 + (10^{b_0})(VI42_{iA})^{b_1}\}$$

where: $VO42_{iA}$ = same specifications as $VI42_{iA}$ except outside bark

$$(14) \qquad VI43_{iA} = (TVI_{iA})/\{1 + (10^{b_03})(TVI_{iA})^{b_13}\}$$

where: VI43_{iA} = tree merchantable volume in cubic feet, inside bark, from a 0.2-foot

stump to a 3-inch top d.o.b., d.b.h. > = 3.6 inches

$$b_{03} = -0.54930$$

$$b_{13} = -1.3024$$

(15)
$$VO43_{iA} = (VI43_{iA})\{1 + (10^{b_0})(VI43_{iA})^{b_1}\}$$

where: VO43_{iA} = same specifications as VI43_{iA} except outside bark.

Per acre tabular values

(16)
$$TS1_A = \sum_{i=1}^{n} (TS1_{iA})$$

(17)
$$B_A = \sum_{i=1}^{n} (B_{iA})$$

(18)
$$Volume_A = \sum_{i=1}^{n} \{(Volume_{iA})(TS1_{iA})\}$$

where $Volume_A = a$ total volume and $Volume_{iA} = volume$ per tree in the ith 1-inch d.b.h. class, for any volume function

(19)
$$\overline{D}_{A} = \{ \sum_{i=1}^{n} (D_{i})(TS1_{iA}) \} / TS1_{A}$$

where \overline{D}_A = arithmetic mean d.b.h.

(20)
$$\overline{D}_{Q} = \sqrt{B_{A}/\{(\pi/576)(\overline{TS1}_{A})\}}$$

where \overline{D}_{Q} = quadratic mean d.b.h.

(21) % Survival =
$$TS0_A/TS0_{10}$$

$$(22) \ \overline{CR}_A = \{ \sum_{i=1}^n (CR_{iA})(TS1_{iA}) \} / TS1_A$$

where \overline{CR}_A = arithmetic mean crown ratio percentage.

Appendix B—Coefficient of Determination and Standard Error of Regression for Fitted Functions

Equation no.	n	R^2 or r^2	s _{y·x}
(3d)	90	0.987*	0.063*
(4)	150	0.315*	2.653*
(5)	90	0.735*	2.211*
(6b)	90	0.811	0.094
(6c)	90	0.727	0.214
(7c)	90	0.482	0.280
(7d)	90	0.204	0.397
(8b)	90	0.984	0.148
(8c)	90	0.846	0.327

^{*}In logarithmic form, from regression where y was transformed to ln (y).

Appendix C—BASIC Program to Generate Predicted Stand and Stock Tables for Young Natural Longleaf Pine

```
10
    REM THIS PROGRAM "LLS&SO" GENERATES STAND AND STOCK TABLES FOR YOUNG
    NATURAL LONGLEAF PINE STANDS HAVING INITIAL AND FINAL AGES BETWEEN 10 AND
20
    REM 20 YEARS, SITE INDEX (INDEX AGE 50 YEARS, MISC. PUBL. 50) OF 66 TO 85
    FEET, AND INITIAL DENSITIES OF 300 TO 1500 TREES PER ACRE AT INITIAL AGE.
30
    OPTION BASE 1
40
    PRINTER IS 0
60
    INTEGER A.S.D
70
    REAL N1, N2, H1(30), T0(30)
     INPUT "S1, $2, A1, A2, T1, T2 ?", S1, S2, A1, A2, T1, T2
80
81
    PRINT LIN(5)
     IMAGE "YIELDS GIVEN TSO (# OF TREES PER ACRE AT DESIRED INITIAL AGE) WITH T
90
YPICAL:
            SURVIVAL -- "
100 PRINT USING 90
    PRINT LIN(3)
101
110 N99=1
120 FOR S=S1 TO S2 STEP 10
130 FOR T0=T1 TO T2 STEP 300
140 FOR A=A1 TO A2 STEP 1
150 IF N99>=3 THEN 180
160 IF A1>10 THEN 270
170 GOTO 200
171 WAIT 500
172 PRINT LIN(12)
180 IMAGE 40X, "CU. FT. VOL. ABOVE 0.2 FT. STUMP"
190 PRINT USING 180
191
    GOTO 220
192 PRINT LIN(12)
200 IMAGE 40X,"CU. FT. VOL. ABOVE 0.2 FT. STUMP"
210 PRINT USING 200
211 IMAGE 40X, "ALL TREES * 4-INCH CLASS & UP"
212 PRINT USING 211
220 IMAGE 13X, "AV.", 4X, " STEMS", 14X, 9("*"), "FOR O.B. TOPS OF----".9("*")
230 PRINT USING 220
240 IMAGE 1X,"TSO SI AGE D+C DBH PER BASAL CR AV. 0
                                                          INCHES *
                                                                       2 INCHES
      3 INCHES"
 ×
250 PRINT USING 240
260 IMAGE 13X,"HT.",5X,"ACRE AREA",6X,"HT. o.b. 1.b. * o.b. 1.b. *
i.b."
261 PRINT USING 260
262 IMAGE 80(" ")
263 PRINT USING 262
270 N99=N99+1
271
   IF N99=4 THEN N99=2
280 H20=S*.520219437307
281 T0(A1)=T0
290 FOR I=A1 TO A2 STEP 1
300 H1(I)=H20*EXP(51,5672/I-976.49/I^2+3836.84/I^3-.61674)
310 T0(I+1)=T0(I)/(.99999+EXP(-20.964+1.1808*I-.25569*H1(I)+.0031657*T0(I)))
320 NEXT I
330 I≃A
340 T11=T0(I)/(.99999+EXP(3.7052-2.5068*(H1(I)/I)-94.772*(H1(I)/T0(I))))
360 B=-.78012-8.4899E-5*H1(I)*T11+.17355*H1(I)+8.7836E-4*T11-1.3083E-6*H1(I)^2*
T11+1.0321E-9*H1(I)^2*T11^2
```

```
C=.80699-2.5619E-4*H1(I)*T11+1.02E-7*H1(I)*T11^2+.16045*H1(I)+9.6973E-4*T11
370
380 S11=0
390 Di3=0
400
    T111=0
    T121=0
410
420
    T123=0
430
    V111=0
440
    V121≃0
450 V123=0
460 V124=0
461 Crpp=0
470 PRINT USING "DDDD,1X,DD,1X,DD,2X,DD.D";T0,S.A.H1(A)
471
    PRINT LIN(1)
480 D=1
490 Dil=1.5
500 IF D=2 THEN D11=1.5
510 N1=T11*(1-EXP(-((D11-A4)/B)^C))
520 N2=T11*(1-EXP(-((D11+1-A4)/B)^C))
530
     T112=N2-N1
    IF D=1 THEN T112=N1
540
550
    T112=PROUND(T112,0)
560 B0=.23727+5.9139/H1(A)
570 B1=-.19070-.012645*T11/A-.11953*H1(A)+.0010798*T11+.0016258*H1(A)^2
580 H10=H1(A)*EXP(B0+B1/D)
581 C0=3.7392-.54950*I+.045001*H1(I)+5.7003E-4*I^3+4.8139E-8*I^3*T11
582 C1=-.53734-.00251857*I^2+1.8202E-5*I*T11
583 S1=H1(I)*EXP(C0+C1/D)
584
    Cr=(H10-S1)/H10*100
586 IF Cr<=5 THEN Cr=10
590 B00=D^2*(3.14159254/576)*T112
600 T00=.00535+.0021971*D^2*H10
610 T012=T00*T112
620 T01=T00*(1+10^(-.30925)*T00^(-.21895))
630
    T013=T01*T112
640
     T121=T121+T012
650
     T123=T123+T013
    S11=S11+B00
660
670 D12=D*T112
680 D13=D13+D12
681 Crpc=Cr*T112
682 Crpp=Crpp+Crpc
683 Cr=PROUND(Cr.-1)
690 T111=T111+T112
    IF D=1 THEN 890
700
    IF T112K.50000000001 THEN 910
710
720
    IF D<4 THEN 890
    V14=T00/(1+10^(-1.2415)*T00^(-1.2107))
730
740
    -V112=V14*T112
    | V112=PROUND(V112,-1)
741
750 V15=V14*(1+10^(-.30925)*V14^(-.21895))
    V113=V15*T112
760
     V113=PROUND(V113,-1)
761
     V16=T00/(1+10^(-.5493)*T00^(-1.3024))
770
780
    V114=V16*T112
    V114=PROUND(V114,-1)
781
    V17=V16*(1+10^(-.30925)*V16^(-.21895))
790
    V115=V17*T112
800
     V115=PROUND(V115,-1)
801
810 V111=V111+V112
820 V121=V121+V113
```

```
830
    V123=V123+V114
840 V124=V124+V115
850 PRINT USING "17X,DD,2X,DDD,1X,DD.D,2(2X,DD),2X,DDD.D,2X,DDD.D,2(2X,DDD.D,2X
,DDD.D)";D,T112,B00,Cr,H10,T013,T012,V113,V112,V115,V114
860 D=D+1
     D11=D11+1
861
870 IF D<11 THEN 500
880
     GOTO 910
     PRINT USING "17X,DD,2X,DDD,1X,DD.D,2(2X,DD),2X,DDD.D,2X,DDD.D";D,T112,B00,C
890
r, H10, T013, T012
900 GOTO 860
910 D33=D13/T11
920 D44=SQR(S11/(.005454*T11))
930 R1=T0(I)
940 R2=T0(A1)
950 S55=R1/R2*100
951 Barcr=Crpp/T11
960 IMAGE 20X,"
970 PRINT USING 960
972
    IF D<5 THEN 1000
980 PRINT USING "20%,DDDD,2%,DD.D,9%,DDDD.D,1%,DDDD.D,1%,DDDD.D,1%,DDDD.D,1%,DD
DD.D,1X,DDDD.D"; T111,S11,T123,T121,V121,V111,V124,V123
981 PRINT LIN(1)
990
    GOTO 1030
1000 PRINT USING "20X,DDDD,2X,DD.D,9X,DDD.D,1X,DDD.D";T111,S11,T123,T121
1001 PRINT LIN(1)
1030 PRINT USING "17A,D.DD,1X,18A,D.DD"; "ARITH. MEAN DBH =",D33," QUADR. MEAN DB
H = ", D44
1035 PRINT USING "17A,D.DD,2(1X,3A,D.DD)"; "WEIBULL PARAM: A=",A4,"B=",B,"C=",C
1040 PRINT USING "12A,1X,DDD.D,5X,19A,1X,DDD.D"; "SURVIVAL %=",855, "MEAN CROWN RA
TIO %=",Barch
1041 PRINT LIN(6)
1050 NEXT A
1051 PAUSE
1060 NEXT TO
1070 NEXT S
1090 END
```

Appendix D—Predicted Stand and Stock Tables for Young Natural Longleaf Pine at Various Initial Densities, Site Indices, and Ages

YIELDS GIVEN TSO (# OF TREES PER ACRE AT DESIRED INITIAL AGE) WITH TYPICAL SURVIVAL--

TSO(10) E	SI	AGE	AV. D+C HT.	DBH	STEMS PER ACRE	BASAL AREA	CR	AV. HT.	ALL TR	EES ******	OR O.B.	4-INCH CI TOPS OF INCHES	LASS *	AND GI ***** 3	REAT	ER k***
300 7	70	10	9.1								 				-	
				1	183	1.0	70.2	6.7	7.9	3.7						
				2	59	1.3	76.1	12.2	11.9	6.6						
				3	i	. 0	77 . 8	14.9	.5	. 3						
					243	2.3			20.3	10.6			-		_	
ARITH. N	EAN 1	DBH = 1	1.3		QUADRATI	C MEAN D)BH =1.33	WE	IBULL PAR	AMETERS	A = .55	B =	.80	C	=1	9 9
									===							
_					Z SUR	/IVAL= 1	.00.0	ME	AN CROWN	RATIO =	71.8					
TSO(10)	SI	AGE	AV. D+C HT.	DBH	STEMS PER ACRE	Basal Area	CR	AV. HT.	ALL TE	REES *******	FOR O.B.	4-INCH C TOPS OF INCHES	LASS 1	AND G	REAT	ER **** HES
	SI 70	AGE	D+C		PER		CR		ALL TF ****** 0 IN	REES \$******* CHES	* FOR O.B. * 2	4-INCH C TOPS OF INCHES	LASS 1	AND G	REAT	ER **** HES
			D+C HT.	<u> </u>	PER ACRE	AREA		HT.	ALL TF ******* 0 INC 0.B.	REES \$*\$***** CHES I.B.	* FOR O.B. * 2	4-INCH C TOPS OF INCHES	LASS 1	AND G	REAT	ER **** HES
			D+C HT.	1	PER		CR 56.1 74.2		ALL TF ****** 0 IN	REES \$******* CHES	* FOR O.B. * 2	4-INCH C TOPS OF INCHES	LASS 1	AND G	REAT	ER **** HES
TSD(10)			D+C HT.	<u> </u>	PER ACRE	AREA	56.1	HT. 5.0	ALL TF ************************************	REES \$\$\$\$\$\$\$\$ CHES I.B. .1 7.4 49.2	* 0.B. * 2 * 0.B	4-INCH C TOPS OF INCHES	LASS1	AND G	REAT **** INC B	ER **** HES I.B.
			D+C HT.	1 2 3 4	PER ACRE 6 57 123 92	.0 1.2 6.0 8.0	56.1 74.2 78.4 80.2	5.0 14.1 19.9 23.7	ALL TF ************************************	REES \$\$\$\$\$\$\$ I.B. .1 7.4 49.2 77.2	* C.B. * 2 * C.B	4-INCH C TOPS OF INCHES I. I.B	LASS1	AND G ***** * 3 * 0.	REAT **** INC B	ER **** HES I.B.
			D+C HT.	1 2 3 4 5	PER ACRE 6 57 123 92 21	.0 1.2 6.0 8.0 2.9	56.1 74.2 78.4 80.2 81.3	5.0 14.1 19.9 23.7 26.3	ALL TF ************************************	REES ***********************************	* 0.B. * 0.B * 0.B	4-INCH C TOPS OF INCHES I.E	1. 1 1. 1	AND G	REAT **** INC B.	ER **** HES I.B.
			D+C HT.	1 2 3 4	PER ACRE 6 57 123 92 21	.0 1.2 6.0 8.0 2.9	56.1 74.2 78.4 80.2	5.0 14.1 19.9 23.7	ALL TF ************************************	REES \$\$\$\$\$\$\$ I.B. .1 7.4 49.2 77.2	* 0.B. * 0.B * 0.B	4-INCH C TOPS OF INCHES I.E I.E 29.1	.1 .4 .2	AND G ***** * 3 * 0.	REAT **** INC B. 3.1	ER **** HES I.B.
			D+C HT.	1 2 3 4 5	PER ACRE 6 57 123 92 21	.0 1.2 6.0 8.0 2.9	56.1 74.2 78.4 80.2 81.3	5.0 14.1 19.9 23.7 26.3	ALL TF ************************************	REES ***********************************	* 0.B. * 0.B * 0.B	4-INCH C TOPS OF INCHES I.E I.E 29.1	.1 .4 .2	AND G	REAT **** INC B. 3.1	ER **** HES I.B.
	70	15	D+C HT. 24.9	1 2 3 4 5 6	PER ACRE 6 57 123 92 21 1	AREA 1.2 6.0 8.0 2.9 .2	56.1 74.2 78.4 80.2 81.3	5.0 14.1 19.9 23.7 26.3 28.2	ALL TF ************************************	.1 7.4 49.2 77.2 30.5 2.2	* 0.B. * 0.B * 0.B	4-INCH C TOPS OF INCHES I.E I.E 4 72.8 8 29.1 2 103	.1 .4 .2	AND G ***** * 3. * 0.	REAT **** INC B. 3.1	ER **** HES I.B.

			AV.		STEMS				*****	*******F	OR D.B. TO	OVE 0.2 FOO OPS OF*	******	****
TSO(10)	SI	AGE	D+C	DBH	PER	BASAL	CR	AV.	O INC			iches *		
			HT.		ACRE	AREA		HT.	0.B.	I.B.	\$ 0.B.	I.B. *	0.B.	I.B.
300	70	20	36.4											
					٥	A 0	A0 F	F 7	0.0	0.0				
				i 2	0 7	0.0 .2	40.5 60.4	5.7 17.6	0.0 1.9	0.0 1.1				
				3	35	1.7	65.5	25.6	28.1	17.9				
				4	87	7.6	67.8	30.9	140.7	95.0	134.3	98.4	114.3	7 5.
				5	187	14.6	69.1	34.6	290.8	283.9	283.9	198.7	261.2	181.
				6	54	10.6	69.9	37.3	221.4	159.6	218.2	157.2	208.0	149.
				7	8	2.1	70.5	39.4	46.1	33.9	45.6	33.6	44.3	32
					298	36.8	•		729.1	511.5	682.0	479.9	627.8	439
ARITH.	MEVN	DBN = 1	1 4		TAGRAIN	IC MEAN '	DBH =4.75	ш	TRIIL PA	PANETERS	A = .55	B =4.48	C =4	. 48
MALIII.	115711	<i>- 1100</i>	7.0		WOND KH!	IC IILIM	-4.75	•		NAME I SAG		•		
					X SUR	VIVAL=	99 .6	H	EAN CROWN	RATIO =	68.0			
									C ALL T			OVE 0.2 FOO		
		-	AV.		STEMS							OPS OF		
TSO(18)	SI	AGE	D+C	DBH		BASAL	CR	AV.	0 IN			NCHES 1		CHES
			HT.		ACRE	AREA		HT.	O.B.	I.B.	* 0.B.	I.B. 1	0.B.	I.B.
600	70	10	9.1											
				1	226	1.2	69.5	6.7	9.7	4.5				
				2	75	1.6	75.8 77.6	12.1 14.8	15.1 .5	8.4 .3				
				3	i	. •	//.0	17.0	. 3					
					302	2.9			25.3	13.2				

% SURVIVAL= 100.0 MEAN CROWN RATIO = 71.2

			AV.		STEMS					BIC FOOT	OR O.B. TO	PS OF	* *		***
20/403	CT.	AGE	D+C	DBH	PER	BASAL	CR	AV.	0 INC			CHES	*	3 INC	
50(10)	31	HGE	HT.	חסע	ACRE	AREA	On.	HT.	0.8.	I.B.	* D.B.	I.B.	*	O.B.	
600	70	15	24.9												
				í	49	. 3	53.5	5.3	1.8	.8					
				2	189	4.1	72.8	14.6	44.5	25.2					
				3	214	10.5	77 .3	20.4	139.7	87.5					
				4	110	9.6	79.2	24.1	141.7	93.9	133.1	87.8		107.6	69.
				5 6	27 3	3.7 .6	80.3 81.0	26.7 28.6	57.7 9.6	39.7 6.8	55.8 9.4	38.4 6.7		49.8 8.8	34 6
				J	592	28.8			394.9	254.0	198.3	132.9		166.2	110
ITH. P	1EAN	DBH = 2	2.8				98H =2.98		IBULL PAI		A = .55 74.4	B =2.	55	C =2	. 49
											r volume ab				
									ALL T	REES	x 4-	INCH CLA	ASS (AND GREA	TER
55/48		ACE	AV.	NDU.	STEMS	DACAI	CB.	ΔU	ALL T	REES *******	* 4- FOR O.B. T	INCH CLA	455 *	AND GREA	TER ****
60(10)	sī	AGE	AV. D+C HT.	DBH	STEMS PER ACRE	BASAL AREA	CR	AV. HT.	ALL T	REES *******	* 4- FOR O.B. T	INCH CLA	ASS (AND GREA ******* 3 In	TER **** ICHES
600	SI 70	AGE	D+C		PER		CR		ALL T ***** 0 IN	REES ******* CHES	* 4- FOR O.B. T * 2 I	INCH CLA OPS OF INCHES	455 :*	AND GREA ******** 3 IN	TER **** ICHES
			D+C HT.		PER ACRE	AREA		HT.	ALL T ****** 0 IN 0.B.	REES ******** CHES I.B.	* 4- FOR O.B. T * 2 I	INCH CLA OPS OF INCHES	455 :*	AND GREA ******** 3 IN	TER **** ICHES
			D+C HT.	1	PER ACRE	AREA	34.9	HT. 6.5	ALL T ***** 0 IN	REES ******* CHES	* 4- FOR O.B. T * 2 I	INCH CLA OPS OF INCHES	455 :*	AND GREA ******** 3 IN	TER **** ICHES
			D+C HT.	1 2	PER ACRE	AREA		HT.	ALL T ****** 0 IN 0.B.	REES ******* CHES I.B. 	# 4- FOR O.B. T # 2 I # O.B.	INCH CLA OPS OF INCHES I.B.	455 (*: *	AND GREA ******* 3 IN O.B.	TER **** ICHES I.1
			D+C HT.	1	PER ACRE 10 72 157	AREA	34.9 56.2	HT. 6.5 18.8	ALL T ****** 0 IN 0.B.	REES ******** CHES I.B. 	# 4- FOR O.B. T # 2 I # 0.B.	INCH CLA OPS OF NCHES I.B.	**************************************	AND GREA ******* 3 IN 0.B.	TER ***** ICHES I.!
			D+C HT.	1 2 3	PER ACRE	.i i.6 7.7	34.9 56.2 61.7	6.5 18.8 26.8 32.0 35.5	ALL T ****** 0 IN 0.B. -4 21.2 131.2 303.5 334.3	REES ******** CHES I.B. 	* 4- FOR O.B. T * 2 I * O.B. 290.2 326.5	INCH CLA OPS OF NCHES I.B. 195.7 229.0	455 (\$: *	AND GREA ******** 3 IN O.B. 248.4 301.3	TER RRRXXI ICHES I.I
			D+C HT.	1 2 3 4 5 6	PER ACRE 10 72 157 182	.1 1.6 7.7 15.9 16.4 8.4	34.9 56.2 61.7 64.1 65.5 66.4	6.5 18.8 26.8 32.0 35.5 38.1	ALL T ****** 0 IN 0.B.	REES ******* CHES I.B. 	* 4- FOR O.B. T * 2 I * 0.B. 290.2 326.5 177.5	195.7 229.0 128.0	455 (#: # #	AND GREA ******** 3 IN 0.B. 248.4 301.3 169.3	16 21 12
			D+C HT.	1 2 3 4 5 6 7	PER ACRE 10 72 157 182 120 43 8	.i i.6 7.7 i5.9 i6.4 8.4 2.i	34.9 56.2 61.7 64.1 65.5 66.4 67.0	6.5 18.8 26.8 32.0 35.5 38.1 40.1	ALL T ****** 0 IN 0.B. -4 21.2 131.2 303.5 334.3 180.0 46.9	REES ***********************************	# 4- FOR O.B. T # 0.B. # 0.B.	195.7 229.0 128.0 34.3	455 (‡ * *	248.4 301.3 169.3 45.1	16 21 12 3
SO(10)			D+C HT.	1 2 3 4 5 6	PER ACRE 10 72 157 182 120 43 8	.1 1.6 7.7 15.9 16.4 8.4 2.1	34.9 56.2 61.7 64.1 65.5 66.4	6.5 18.8 26.8 32.0 35.5 38.1	ALL T ****** 0 IN 0.B. 4 21.2 131.2 303.5 334.3 180.0 46.9 7.8	REES ******* CHES I.B. 	# 4- FOR O.B. T # 0.B. 290.2 326.5 177.5 46.5 7.8	195.7 229.0 128.0 34.3 5.8	ASS (248.4 301.3 169.3 45.1	161 21/ 12:
			D+C HT.	1 2 3 4 5 6 7	PER ACRE 10 72 157 182 120 43 8	.i i.6 7.7 i5.9 i6.4 8.4 2.i	34.9 56.2 61.7 64.1 65.5 66.4 67.0	6.5 18.8 26.8 32.0 35.5 38.1 40.1	ALL T ****** 0 IN 0.B. -4 21.2 131.2 303.5 334.3 180.0 46.9	REES ***********************************	# 4- FOR O.B. T # 0.B. # 0.B.	195.7 229.0 128.0 34.3 5.8	ASS (248.4 301.3 169.3 45.1	161 21/ 12:

% SURVIVAL= 99.1 MEAN CROWN RATIO = 62.4

TSO(10)	SI	AGE	AV. D+C HT.	DBH	STENS PER ACRE	BASAL AREA	CR	AV. HT.	******* 8 INC	******F	* OR O.B. *	4-II	NCH CLA PS OF	SS AN	D GREA: ***** 3 In	TER ****
900	70	10	9.1		<u> </u>	· · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	·							
				1 2 3	258 87 2	1.4 1.9 .1	68.9 75.5 77.4	6.6 12.1 14.8	11.1 17.4 1.0	5.i 9.7 .6						
					347	3.4			29.4	15.4				-		
ARITH.	MEAN	DBH =	1.3		QUADRAT:	IC HEAN I)BH =1.34	u	EIBULL PAR	AMETERS	A = .!	55	B = .	81	C =1	.91
					% SUR	VIVAL= 1	.00.0	ME	EAN CROWN	RATIO =	78.8					

TSO(18)	SI	- AGE	AV. D+C	DBH	STEMS PER	BASAL	CR	AV.	ALL T	REES ******	OR O.B. TO	INCH CLASS DPS OF1		TER ****
			HT.		ACRE	AREA		HT.	0.B.	I.B.	* 0.B.	I.B. 1	0.B.	I.B.
900	76	15	24.9	- 4						····	······································			
				i	137	.7	51.0	5.7	5.3	2.4				
				2	315	6.9	71.5	15.0	76.2	43.3				
				3	255	12.5	76.2	20.8	169.7	106.4				
				4	115	19.0	78.3	24.5	150.3	99.B	141.4	93.4	114.6	74.5
				5	31	4.2	79.4	27.0	67.0	46.2	64.9	44.6	58.0	39 . 6
				6 7	5	1.8	80.1	28.9	16.1	11.4	15.8	11.2	14.8	10.4
				7	i	.3	80.6	30.2	4.5	3.3	4.4	3.2	4.3	3.1
					859	35.6			489.0	312.9	226.5	152.4	191.7	127.6
ARITH.	MEAN	DBH =	2.5		QUADRAT	IC MEAN	DBH =2.76	u	EIBULL PA	RAMETERS	A = .55	B =2.25	C =2	.03
					% SUR	VIVAL=	99.8		EAN CROWN	RATIO =	70.9			

TSD(10) SI AGE B+C DBH PER BASAL CR AV. 8 INCHES \$ 2 INCHES \$ 3 INCHES 1				AV.		STEMS				*****	***** **F	OR O.B.	ABOVE 8.2 TOPS OF-		*****	****
900 70 20 36.4 1 62 .3 29.2 7.4 2.9 1.3	0(10) 9	SI	AGE		DBH			CR						-		
2 198 4.3 51.8 29.0 61.5 35.9 3 248 12.2 57.6 27.9 215.2 138.2 4 197 17.2 60.3 33.0 338.2 229.3 323.8 218.9 278.7 5 109 14.9 61.8 36.4 310.8 218.7 303.8 213.4 280.9 6 43 8.4 62.7 38.9 183.5 132.6 181.0 130.7 172.9 7 12 3.2 63.4 40.8 71.5 52.8 70.9 52.3 68.9 8 3 1.0 63.9 42.3 23.8 17.9 23.6 17.7 23.2 872 61.6 1207.3 826.7 903.1 633.0 824.6 ARITH. NEAN DBH = 3.3 QUADRATIC MEAN DBH = 3.60 WEIBULL PARAMETERS A = .55 B = 3.14 C = 2.3	900	70	20					· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	- w	<u> </u>			· · · · · · · · · · · · · · · · · ·	
2 198 4.3 51.8 20.0 61.5 35.9 3 248 12.2 57.6 27.9 215.2 138.2 4 197 17.2 66.3 33.0 338.2 229.3 323.8 218.9 278.7 5 109 14.9 61.8 36.4 310.8 218.7 303.8 213.4 280.9 6 43.8 8.4 62.7 38.9 183.5 132.6 181.0 130.7 172.9 7 12 3.2 63.4 40.8 71.5 52.8 70.9 52.3 68.9 8 3 1.0 63.9 42.3 23.8 17.9 23.6 17.7 23.2 68.9 8 3 1.0 63.9 42.3 23.8 17.9 23.6 17.7 23.2 68.9 8 22 61.6 1207.3 826.7 903.1 633.0 824.6 62.7 87.2 1207.3 826.7 903.1 633.0 824.6 62.7 87.2 1207.3 826.7 903.1 633.0 824.6 62.7 87.2 1207.3 826.7 903.1 633.0 824.6 62.7 87.2 1207.3 826.7 903.1 633.0 824.6 62.7 87.2 1207.3 826.7 903.1 633.0 824.6 62.7 87.2 1207.3 826.7 903.1 633.0 824.6 62.7 87.2 1207.3 826.7 903.1 633.0 824.6 62.7 87.2 1207.3 826.7 903.1 633.0 824.6 62.7 87.2 1207.3 826.7 903.1 633.0 824.6 62.7 87.2 1207.3 826.7 903.1 633.0 824.6 62.1 87.2 1207.3 826.7 903.1 633.0 824.6 62.1 87.2 1207.3 826.7 903.1 633.0 824.6 62.1 87.2 1207.3 826.7 903.1 633.0 824.6 62.1 87.2 1207.3 826.7 903.1 633.0 824.6 62.1 87.2 1207.3 826.7 903.1 633.0 824.6 62.1 87.2 1207.3 826.7 903.1 633.0 824.6 62.1 87.2 1207.3 826.7 903.1 633.0 824.6 62.1 87.2 1207.3 826.7 903.1 633.0 824.6 62.2 1207.3 826.7 903.1 633.0 824.6 62.2 1207.3 826.7 903.1 62.3 120.2 1207.3 826.7 903.1 62.2																
3 248 12.2 57.6 27.9 215.2 138.2 4 177 17.2 60.3 33.0 338.2 229.3 323.8 218.9 278.7 5 109 14.9 61.8 36.4 310.8 218.7 303.8 213.4 280.9 6 43 8.4 62.7 38.9 183.5 132.6 181.0 130.7 172.9 7 12 3.2 63.4 40.8 71.5 52.8 70.9 52.3 68.9 8 3 1.0 63.9 42.3 23.8 17.9 23.6 17.7 23.2 872 61.6 1207.3 826.7 903.1 633.0 824.6 RRITH. HEAN DBH = 3.3 QUADRATIC MEAN DBH = 3.60 MEIBULL PARAMETERS A = .55 B = 3.14 C = 2.1 2 SURVIVAL= 97.7 HEAN CROWN RATIO = 55.8 TSO(10) SI AGE D+C DBH PER BASAL CR AV. 0 INCHES \$ 4 - INCH CLASS AND GREAT \$ \$ 1.8 \$																
## 197 17.2 66.3 33.0 338.2 229.3 323.8 218.9 278.7 5 109 14.9 61.8 36.4 310.8 218.7 303.8 213.4 280.9 6 43 8.4 62.7 38.9 183.5 132.6 181.0 130.7 172.9 7 12 3.2 63.4 40.8 71.5 52.8 70.9 52.3 68.9 8 3 1.0 63.9 42.3 23.8 17.9 23.6 17.7 23.2 872 61.6 1207.3 826.7 903.1 633.0 824.6 RITH. HEAN DBH = 3.3 QUADRATIC HEAN DBH = 3.60 WEIBULL PARAMETERS A = .55 B = 3.14 C = 2.1					2											
S 109 14.9 61.8 36.4 310.8 218.7 303.8 213.4 280.9 6 43 8.4 62.7 38.9 183.5 132.6 181.0 130.7 172.9 7 12 3.2 63.4 40.8 71.5 52.8 70.9 52.3 68.9 8 3 1.0 63.9 42.3 23.8 17.9 23.6 17.7 23.2 872 61.6 1207.3 826.7 903.1 633.0 824.6 8												323	.8 218.9)	278.7	186
7 12 3.2 63.4 40.8 71.5 52.8 70.9 52.3 68.9 8 3 1.0 63.9 42.3 23.8 17.9 23.6 17.7 23.2 872 61.6 1207.3 826.7 903.1 633.0 824.6 RITH. HEAN DBH = 3.3 QUADRATIC MEAN DBH = 3.60 WEIBULL PARAMETERS A = .55 B = 3.14 C = 2.9																196
B 3 1.0 63.9 42.3 23.8 17.9 23.6 17.7 23.2 B72 61.6 1207.3 826.7 903.1 633.0 824.6 RITH. MEAN DBH = 3.3 QUADRATIC MEAN DBH = 3.60 WEIBULL PARAMETERS A = .55 B = 3.14 C = 2.3 X SURVIVAL= 97.7 MEAN CROWN RATIO = 55.8 CUBIC FOOT VOLUME ABOVE 0.2 FOOT STUMPALL TREES * 4-INCH CLASS AND CREATING THE STREET STRE						43	8.4	62.7	38.9	183.5	132.6	181	.0 130.7	7	172.9	124
RITH. HEAN DBH = 3.3 QUADRATIC HEAN DBH =3.60 MEIBULL PARAMETERS A = .55 B =3.14 C =2.5 Z SURVIVAL= 97.7 NEAN CROWN RATIO = 55.8 CUBIC FOOT VOLUME ABOVE 0.2 FOOT STUMPALL TREES * 4-INCH CLASS AND GREATING STATES AND G																50
AV. STEMS AV. STEMS AV. STEMS AV. DBH PER BASAL CR AV. 0 INCHES \$ 2 INCHES \$ 3 INCHES					8	3	1.0	63.9	42.3	23.8	17.9	23	.6 17.7	,	23.2	17
### SURVIVAL= 97.7 HEAN CROWN RATIO = 55.8 CUBIC FOOT VOLUME ABOVE 0.2 FOOT STUMP ALL TREES * 4-INCH CLASS AND GREATI ####################################						872	61.6			1207.3	826.7	903	.1 633.0	5	824.6	575
T SURVIVAL= 97.7 MEAN CROWN RATIO = 55.8 CUBIC FOOT VOLUME ABOVE 0.2 FOOT STUMP ALL TREES * 4-INCH CLASS AND GREATI ************************************	א עדר	E AN	. ב מפע	17		TAGGAILO	IC MEAN I	NBH =1 40	uc	TRIH: PA	DAMETEDS	Δ = 5 '	R = 7	t 44	r =2	18
CUBIC FOOT VOLUME ABOVE 0.2 FOOT STUMP ALL TREES	1111. II	r_rait	יועש – ,	J. J		WOUNDY!	IC IICHN I	VD11 -3.00					J D - C	J. 47	U -L	
AV. STEMS AV. STEMS AV. STEMS AV. STEMS ***********************************						% SUR	JIVAL=	97.7	HE	AN CROWN	RATIO =	55.8				
AV. STEMS AV. STEMS AV. STEMS AV. STEMS AV. BINCHES * 4-INCH CLASS AND GREATE **********************************																
AV. STEMS AV. STEMS AV. STEMS AV. STEMS ***********************************																
AU. STEMS AU. STEMS AU. STEMS AU. STEMS AU. STEMS AU. STEMS AU. BINCHES AU.																
AV. STEMS AV. STEMS AV. STEMS AV. STEMS ***********************************																
AV. STEMS AV. STEMS AV. STEMS AV. STEMS ***********************************		-														
AV. STEMS ************************************																
SO(10) SI AGE D+C DBH PER BASAL CR AV. 0 INCHES \$ 2 INCHES \$ 3 INC HT. ACRE AREA HT. O.B. I.B. \$ 0.B. I.B. \$ 0.B. 1 293 1.6 68.2 6.5 12.5 5.8 2 101 2.2 75.3 12.0 20.1 11.2 3 2 .1 77.2 14.7 1.0 .6										C	UBIC FOOT	VOLUHE	ABOVE 0.2	2 F00T	STUMP-	
HT. ACRE AREA HT. Q.B. I.B. \$ Q.B. I.B. \$ Q.B. 1200 70 10 9.1 1 293 1.6 68.2 6.5 12.5 5.8 2 101 2.2 75.3 12.0 20.1 11.2 3 2 .1 77.2 14.7 1.0 .6										ALL T	REES	*	4-INCH CL	LASS A	ND GREA	TER
1 293 1.6 68.2 6.5 12.5 5.8 2 101 2.2 75.3 12.0 20.1 11.2 3 2 .1 77.2 14.7 1.0 .6										ALL T	REES *******	* OR O.B.	4-INCH CL	LASS A	ND GREA	TER ****
1 293 1.6 68.2 6.5 12.5 5.8 2 101 2.2 75.3 12.0 20.1 11.2 3 2 .1 77.2 14.7 1.0 .6	(10)	SI	AGE	D+C	DBH	PER		CR		ALL T ****** 0 In	REES ******** CHES	* OR O.B.	4-INCH CL TOPS OF- 2 INCHES	LASS A **	ND GREA ****** 3 IN	TER **** CHES
2 101 2.2 75.3 12.0 20.1 11.2 3 2 .1 77.2 14.7 1.0 .6				D+C HT.	DBH	PER		CR		ALL T ****** 0 In	REES ******** CHES	* OR O.B.	4-INCH CL TOPS OF- 2 INCHES	LASS A **	ND GREA ****** 3 IN	TER **** CHES
2 101 2.2 75.3 12.0 20.1 11.2 3 2 .1 77.2 14.7 1.0 .6				D+C HT.	DBH	PER		CR		ALL T ****** 0 In	REES ******** CHES	* OR O.B.	4-INCH CL TOPS OF- 2 INCHES	LASS A **	ND GREA ****** 3 IN	TER **** ICHES
				D+C HT.		PER ACRE	AREA		HT.	ALL T ****** 0 IN O.B.	REES ***********************************	* OR O.B.	4-INCH CL TOPS OF- 2 INCHES	LASS A **	ND GREA ****** 3 IN	TER **** ICHES
396 3.9 33.6 17.6				D+C HT.	1	PER ACRE	AREA	68.2	HT. 6.5	ALL T ******* 0 IN O.B.	REES ***********************************	* OR O.B.	4-INCH CL TOPS OF- 2 INCHES	LASS A **	ND GREA ****** 3 IN	TER **** ICHES
				D+C HT.	1 2	PER ACRE 293 101	1.6 2.2	68.2 75.3	HT. 6.5 12.0	ALL T ****** 0 IN O.B. 12.5 20.1	REES ***********************************	* OR O.B.	4-INCH CL TOPS OF- 2 INCHES	LASS A **	ND GREA ****** 3 IN	TER **** ICHES
				D+C HT.	1 2	PER ACRE 293 101 2	1.6 2.2	68.2 75.3	HT. 6.5 12.0	ALL T ****** 0 IN O.B. 12.5 20.1 1.0	REES ***********************************	* OR O.B.	4-INCH CL TOPS OF- 2 INCHES	LASS A **	ND GREA ****** 3 IN	TER **** CHES

% SURVIVAL= 100.0 MEAN CROWN RATIO = 70.1

			Alt		STEMS				*****	*******	DR D.B. TO	PS OF*	*******	***
rs0(10)	SI	AGE	AV. D+C	DBH	PER	BASAL	CR	AV.	0 INC		* 2 IN	ICHES *	· 3 INC	HES
			HT.		ACRE	AREA		HT.	O.B.	1.B.	* 0.B.	I.B. *	O.B.	I.B.
1200	70	15	24.9		· <u> </u>									
				i	2 2 1	1.2	48.6	6.0	8.9	4.1				
				2	428	9.3	70.2 75.2	15.5 21.2	106.1 201.0	60.5 126.3			•	
				3 4	297 116	14.6 18.1	77.4	24.9	153.5	102.0	144.6	95.6	117.6	76.5
				5	28	3.8	78.6	27.3	61.1	42.2	59.2	40.8	53.0	36.2
				6	5	1.0	79.3	29.i	16.3	11.5	16.0	11.3	14.9	10.5
					1095	40.0			546.9	346.7	219.8	147.7	185.5	123.2
ARITH.	MEAN	DBH = 1	2.4		QUADRATI	IC MEAN I	DBH =2.59	WE	IBULL PA	RAMETERS	A = .55	B =2.06	C =1	. 92
					7 51101	VIVAL=	99.4	ME	AN CROWN	RATIO =	68.2			
		-							ALL T	REES		INCH CLASS	AND GREA	TER
TDD / 4 A A	\ 6 T	-	AV.	ND LI	STEMS	BACAI	rb	ΔU	ALL T	REES ******	* 4- FOR O.B. T	INCH CLASS	AND GREA	TER *****
TSO(10)) S I	AGE	AV. D+C ht.	ДВ Н		Basal Area	CR	AV. HT.	ALL T	REES	* 4- FOR O.B. T	INCH CLASS OPS OF INCHES	AND GREA	TER ***** ICHES
TSO(18)) SI 70	AGE	D+C		PER		CR		ALL T ****** 0 IN	REES ******* CHES	* 4- FOR O.B. T * 2 I	INCH CLASS OPS OF INCHES	AND GREA ******** * 3 IN	TER ***** ICHES
			D+C HT.	i	PER ACRE	AREA	23.9	HT. 8.2	ALL T ****** 0 IN 0.B.	REES ***********************************	* 4- FOR O.B. T * 2 I	INCH CLASS OPS OF INCHES	AND GREA ******** * 3 IN	TER ***** ICHES
			D+C HT.	i 2	PER ACRE 124 300	.7 6.5	23.9 47.7	HT. 8.2 21.1	ALL T ****** 0 IN 0.B.	REES ***********************************	* 4- FOR O.B. T * 2 I	INCH CLASS OPS OF INCHES	AND GREA ******** * 3 IN	TER ***** ICHES
			D+C HT.	i	PER ACRE 124 300 308	.7 6.5 15.1	23.9 47.7 53.9	8.2 21.1 28.9	ALL T ****** 0 IN 0.B.	REES ***********************************	* 4- FOR O.B. T * 2 I	INCH CLASS OPS OF INCHES	AND GREA ******** * 3 IN * 0.B.	TER ***** ICHES I.B.
			D+C HT.	i 2	PER ACRE 124 300	.7 6.5	23.9 47.7	8.2 21.1 28.9 33.9 37.2	ALL T ****** 0 IN 0.B. 6.1 97.6 276.2 374.8 314.1	REES ***********************************	\$ 4- FOR O.B. T \$ 2.1 \$ 0.B.	INCH CLASS OPS OF NCHES I.B.	AND GREA ******** * 3 IN * 0.B.	TER ***** CHES I.B.
			D+C HT.	1 2 3 4 5 6	PER ACRE 124 300 308 213 108 42	7 6.5 15.1 18.6 14.7 8.2	23.9 47.7 53.9 56.7 58.3 59.3	8.2 21.1 28.9 33.9 37.2 39.6	ALL T ****** 0 IN 0.B. 6.1 97.6 276.2 374.8 314.1 182.2	REES ***********************************	* 4- FOR 0.B. T * 2.1 * 0.B. 359.4 307.2 179.8	243.4 216.1 130.0	AND GREA ******** * 3 IN * 0.B. 310.7 284.7 172.0	TER ***** CHES
			D+C HT.	1 2 3 4 5 6 7	124 300 308 213 108 42	7 6.5 15.1 18.6 14.7 8.2 3.5	23.9 47.7 53.9 56.7 58.3 59.3 60.0	8.2 21.1 28.9 33.9 37.2 39.6 41.5	ALL T ****** 0 IN 0.B. 6.1 97.6 276.2 374.8 314.1 182.2 78.6	REES ***********************************	* 4- FOR 0.B. T * 2.1 * 0.B. 359.4 307.2 179.8 77.9	243.4 216.1 130.0 57.6	AND GREA ******** * 3 IN * 0.B. 310.7 284.7 172.0 75.8	TER ***** ICHES I.B. 208. 199. 124. 55.
TSO(10)			D+C HT.	1 2 3 4 5 6	PER ACRE 124 300 308 213 108 42	7 6.5 15.1 18.6 14.7 8.2	23.9 47.7 53.9 56.7 58.3 59.3	8.2 21.1 28.9 33.9 37.2 39.6	ALL T ****** 0 IN 0.B. 6.1 97.6 276.2 374.8 314.1 182.2	REES ***********************************	* 4- FOR 0.B. T * 2.1 * 0.B. 359.4 307.2 179.8	243.4 216.1 130.0 57.6 18.0	AND GREA ******** * 3 IN * 0.B. 310.7 284.7 172.0	TER ***** ICHES
			D+C HT.	i 2 3 4 5 6 7 8	124 300 308 213 108 42 13	7 6.5 15.1 18.6 14.7 8.2 3.5 1.8	23.9 47.7 53.9 56.7 58.3 59.3 60.0 60.5	8.2 21.1 28.9 33.9 37.2 39.6 41.5 42.9	6.1 97.6 276.2 374.8 314.1 182.2 78.6 24.1 10.3	REES ***********************************	* 4- FOR 0.B. T * 2 1 * 0.B. 359.4 307.2 179.8 77.9 23.9 10.2	243.4 216.1 130.0 57.6 18.0 7.8	310.7 284.7 172.0 75.8 23.5	TER ***** CHES I.B. 208. 199. 124. 55. 17. 7.

% SURVIVAL= 94.5 MEAN CROWN RATIO = 50.2

TSO(10)	SI	AGE	AV. D+C HT.	DBH	STENS PER ACRE	BASAL AREA	CR	AV. HT.		******	FOR O.B.	ABOVE 0.2 TOPS OF- 2 INCHES B. I.B.	*	****** NI E	
1500	70	10	9.1									1, - 1, - 1,			
				i	3 3 0	1.8	67.5	6.9	5 14.0	6.5					
				2 3	115 3	2. 5 .i	75.0 77.0	12.0 14.7	22.8	12.7 .9					
				_	448	4.5	,,. u	44.7	38.2	20.1			-		
					770	7.3			38.2	20.1					
ARITH.	MEAN	DBH =	1.3		QUADRAT	IC MEAN I)BH =1.35		WEIBULL PA	RAMETERS	A = .5	55 B =	.81	C =i	.84
					X SUR	VIVAL= 1	100.0		MEAN CROWN	RATIO =	69.5				
TSO(10)	SI-	AGE	AV. D+C	DBH	STEMS PER	BASAL	CR	AV.	ALL T ***** 0 In	REES ******* CHES	* FOR O.B. *	ABOVE 0.2 4-INCH CL TOPS OF- 2 INCHES	ASS A	ND GREA ****** 3 IN	TER ****
			HT.		ACRE	AREA		HT.	O.B.	I.B.	* 0.	B. I.B.	*	0.B.	I.B.
1500	70	15	24.9												
				i	263	1.4	46.4	6.3	S 10.9	5.0					
				2	562	12.3	69.1	15.9		81.4					
				3 4	359 108	17.6 9.4	74.3 76.5	21.6		155.2	471	7 00 7		444.0	70
				5	16	2.2	76.3 77.8	25.2 27.6		96.2 24.4	136	5.3 90.3 5.2 23.6		111.2 30.6	72.4 20.9
				6	i	.2	78.6	29.4		2.3		5.2 2.3		3.0	2.
					1309	43.i			583.2	364.6	173	116.2	•	144.8	95.4
ARITH.	MEAN	DBH = :	2.3		QUADRAT	IC MEAN I)BH =2.46		WEIBULL PA	RAMETERS	A = .5	5 B = 1	.96	C =2	. 07

% SURVIVAL= 98.6 MEAN CROWN RATIO = 66.7

			AV.		STEMS					BIC FOOT		IVE 0.2 FOO'	T STUMP	
TSO(10)	Sī	AGE	D+C	DBH	PER	BASAL	CR	AV.	0 INC	HES	* 2 I	ICHES *	3 INC	HES
,00(11)	•	,,,,,	HT.		ACRE	AREA		HT.	O.B.	I.B.	* O.B.	I.B. \$	O.B.	I .B.
1500	70	20	36.4											
				i	141	.8	19.9	8.9	7.4	3.5				
				2	367	8.0	44.6	21.9	123.5	7 2.7				
				3	378	18.6	51.0	29.7	346.9	223.8				
				4	244	21.3	53.9	34.5	437.0	297.3	419.4	284.5	363.8	244.1
				5	109	14.9	55.5	37.8	321.6	226.8	314.7	221.6	292 .0	204.6
					35	6.9	56.6	40.1	153.7	111.3	151.7	109.8	145.2	194.8
				6 7	8	2.1	57.4	41.9	48.9	36.1	48.5	3 5.8	47.1	34.8
				8	i	.3	57.9	43.3	8.i	6.1	8.1	6.1	7.9	5.9
					1283	72.8			1447.2	977.7	942.4	657.8	856.0	594.2
ARITH.	MEAN	BH =	3.0		QUADRAT	IC MEAN	DBH =3.23	1	WEIBULL PA	RAMETERS	A = .55	B =2.73	C =2	. 04
					% SUR	VIVAL=	88.2		MEAN CROWN	RATIO =	46.9			

TSO(18)	SI	AGE	AV. D+C HT.	DBH	STENS PER ACRE	BASAL AREA	CR	AV. HT.	ALL T	REES *******	FOR O.B. 1	-INCH CLAS TOPS OF INCHES	65 and Grea *******	ITER I**** ICHES
300	80	10	18.4											
				i 2	162 1 0 4	.9 2.3	61.2 78.7	6.3 12.1		3.1				
				3	4	.2	73.4	15.1		11.6 1.2				
					270	3.3			29.6	15.9				
ARITH.	MEAN	DBH =	i.4		QUADRAT	IC MEAN I	DBH =1.51		WEIBULL PA	RAMETERS	A = .55	B = .9	99 C =2	2.09
					% SUR	JIVAL= :	100.0		MEAN CROWN	RATIO =	65.1			
TSO(18)	SI	AGE	AV. D+C HT.	DBH	STEMS PER ACRE	Basal Area	CR	AV. Ht.	ALL T	REES ******** CHES	FOR O.B. T	-INCH CLAS TOPS OF INCHES	S AND GREA	TER
300	80	15	28.4							- T - 1				
				i 2 3 4 5	2 31 95 115 51	.0 .7 4.7 10.0 7.0	40.4 67.8 72.9 75.4 76.8	4.9 14.7 21.3 25.6 28.5	7.4 64.4 156.1 115.9	.0 4.2 40.5 104.0 80.2	147.3 112.4	97.6 77.7	120.6 101.2	78.6 69.4
				•	6	1.2	77.7	30.7		14.6	20.1	14.3	18.9	13.4
					300	23.5			364.3	243.5	279.8	189.6	240.7	161.4
ARITH.	MEAN	DBH = 3	3.7		QUADRAT	IC MEAN I)BH =3.79	1	WEIBULL PA	RAMETERS	A = .55	B =3.4	S C =3	.73

% SURVIVAL= 100.0 MEAN CROWN RATIO = 73.8

			AV.		STEMS				*****	******F	OR O.B. TO	IVE 0.2 F001 IPS 0F*1	******	***
TS0(10)	SI	AGE	D+C ht.	DBH	PER ACRE	Basal Area	CR	AV. HT.	0 INC D.B.	HES I.B.	\$ 2.18 \$ 0.8.	I.B. *	3 INC 0.B.	HES I.B.
				<u></u>	77011									
390	80	20	41.6											
				i	0	0.0	26.1	6.6	0.8	0.0				
				2	2	. 0	49.9	28.1	.6	.4				
				3	16	.8	56.0	29.i	14.4	9.3				
				4	53	4.6	58.8	35 .0	96.1	65.4	92.3	62.6	80.2	53.9
				5	98	13.4	60.4	39.1	298.2	210.7	292.0	206.1	27 1 .8	190.9
				6	92	18.1	61.4	42.0	422.0	306.4	416.7	302.4	39 9.9	289 . 4
				7	34	9.1	62.1	44.3	219.0	162.4	217.2	161.0	211.6	156.6
				8	3	1.0	62.6	46.1	25.8	19.5	25.7	19.4	25.2	19.
					298	47.0			1076.0	774.1	1043.9	751.5	988.7	709.
ARITH.	MEAN	DBH = '	5.2		QUADRAT	IC MEAN D	BH =5.36	¥	EIBULL PAR	RAMETERS	A = .55	B =5.13	C =4	.96
					% SUR	VIVAL=	9 9.9	ř	IEAN CROWN	RATIO =	60.0			
		-							C	UBIC FOOT	VOLUME A	OVE 0.2 FOO	IT STUMP-	
									ALL TI		* 4-	INCH CLASS	AND GREA	
			AV.		STEMS		**		*****	*******		OPS OF1		****
TS0(10)) SI	AGE	D+C	DBH		BASAL	CR	AV.	0 IN	CHES		NCHES 4	3 IN	CHES
			HT.		ACRE	AREA		HT.	O.B.	I.B.	* 0.B.	1.B. 4	0.B.	I.B.

TSO(10)	SI	AGE	AV. D+C HT.	DBH	STEMS PER ACRE	BASAL AREA	 Cr	AV. HT.	ALL TR	EES ******	* 4- OR O.B. T	INCH CLASS OPS OF NCHES	OT STUMP AND GREATER ********** 3 INCHES O.B. I.B.
608	80	18	10.4		·							-	
				i 2 3	230 141 8	1.3 3.1 .4	59.4 70.0 72.9	6.2 12.0 15.0	9.4 28.0 3.9	4.4 15.6 2.4			
					379	4.7			41.4	22.4			
ARITH.	MEAN	DBH =	1.4		QUADRAT	IC MEAN I)BH =1.51	W	EIBULL PAN	RAMETERS	A = .55	B = .98	B C =1.98

% SURVIVAL= 100.0 MEAN CROWN RATIO = 63.6

TSO(10)	e t	ACE	AV.	D.D.I.	STEMS	******			****	******		BOVE 0.2 FO		
130(10)	31	AGE	D+C ht.	DBH	PER ACRE	BASAL AREA		AV. Ht.	0 IN 0.B.	I.B.	* 2 * 0.B.			CHES
600	80	15	28.4								· · · · · · · · · · · · · · · · · · ·			
				i	31	.2		5.3	3 i.2	.5				
				2	146	3.2		15.3		20.4	*			
				3 4	210 147	10.3 12.8	71.4 74.1	21.8		91.6				
				5	^3 7	7.2	75.6	28.9		135.2 84.6	191.6 118.4	127.2 81.9	157.4 106.8	102.9 73.3
				6	9	1.8	76.6	31.1		22.2	30.6	21.8	28.8	73.3 20.4
				7	1	. 3	77.2	32 .7	4.8	3.5	4.8	3.5	4.6	3.3
					597	35.8			543.1	358.0	345.4	234.4	297.6	199.9
ARITH.	MEAN	DBH =	3.i		QUADRAT	IC MEAN	DBH =3.31		WEIBULL PA	RAMETERS	A = .55	B =2.90	C =2	43
												2 2.70	0 -2	
					7 SOK	JIVAL=	180.0		MEAN CROWN	RATIO =	69.2			
700. (0)	-		AV.		STEMS				ALL T	REES	* 4-	BOVE 0.2 FOO INCH CLASS	AND GREA	
TSO(10)	SI	AGE	D+C	DBH		BASAL	CR	AV.	0 IN	CHES	* 21	NCHES 1	3 IN	
			HT.		ACRE	AREA		HT.	O.B.	I.B.	* 0.B.	I.B. 4	k 0.18.	I.B.
600	80	20	41.6	•										
				i	5	. 0	19.1	7.6	. 2	. i				
				2	46	1.0	44.5	21.5		8.9				
				3	120	5.9	5i.i		112.6		242.5			
				4 5	174 151	15.2 20.6	54.1 55.8	36.1 40.1		222.0		212.9	273.4	184.2
				6	77	15.1	56.9	43.0		333.5 262.2	461.5 356.3	326.3 258.9	430.6 342.2	303.0 248.0
				7	21	5.6	57.6	45.2		102.2	136.6	101.4	133.2	98.7
				8	3	1.0	58.2	46.9		19.8	26.1	19.7	25.6	19.3
					597	64.5			1448.8	1021.5	1293.4	919.2	1205.0	853.2
ARITH. 1	MEAN	DBH = 4	1.2		QUADRATI	C MEAN	DBH =4.45	!	WEIBULL PA	RAMETERS	A = .55	B =4.14	C =3	. 21
					% SURV	IVAL=	99.7	ļ	MEAN CROWN	RATIO =	53.3			

T\$0(10)	SI	AGE	AV. D+C HT.	DBH	STEMS PER ACRE	BASAL AREA	CR	AV. HT.	ALL TR ****** 0 INC 0.B.	******	OR D.B.	TOPS OF-	** *	3 1	
900	80,	10	10.4												
				1	273	1.5	58.2 69.5	6.i 11.9	11.1 32.4	5.1 18.0					
				2	164 10	3.6 .5	72.6	14.9	4.9	3.0					
					447	5.6			48.4	26.2					
ARITH. 1	MFAN	DRH = '	1.4		QUADRAT	IC MEAN D)BH =1.51	WE	IBULL PAR	AMETERS	A = .55	B =	.98	C =	1.93
HN 2 1111	· i ·														
					X SUR	VIVAL= i	.08.0	ME	AN CROWN	RATIO =	62.5				
			AU.		STEMS				ALL TI	REES	*	ABOVE 0.2 4-INCH CL TOPS OF-	ASS A	AND GRE	ATER
TSO(10)	SI	_ AGE	AV. D+C	DBH	STEMS PER	Basal	CR	AV.	ALL TF ****** 0 IN	REES ******** CHES	* FOR O.B. * 2	4-INCH CL TOPS OF- INCHES	a 22A. **	ND GRE ***** 3 I	ATER ***** NCHES
TSO(10)	SI	_ AGE		DBH		BASAL AREA	CR	AU. HT.	ALL TF ****** 0 IN	REES *******	* FOR O.B. * 2	4-INCH CL TOPS OF-	a 22A. **	ND GRE ***** 3 I	ATER *****
TSO(10)	SI 80	_ AGE_	D+C	DBH	PER		CR		ALL TF ****** 0 IN	REES ******** CHES	* FOR O.B. * 2	4-INCH CL TOPS OF- INCHES	a 22A. **	ND GRE ***** 3 I	ATER ***** NCHES
			D+C HT.		PER ACRE	AREA	<u> </u>	HT.	ALL TF ****** G IN O.B.	REES IXXXXXXXX CHES I.B.	* FOR O.B. * 2	4-INCH CL TOPS OF- INCHES	a 22A. **	ND GRE ***** 3 I	ATER ***** NCHES
			D+C HT.	<u>i</u>	PER	AREA	CR 33.0 63.3		ALL TF ****** 0 IN	REES ******** CHES	* FOR O.B. * 2	4-INCH CL TOPS OF- INCHES	a 22A. **	ND GRE ***** 3 I	ATER ***** NCHES
			D+C HT.	i 2 3	PER ACRE 112 284 268	.6 6.2 13.2	33.0 63.3 70.0	5.6 15.8 22.3	ALL TF ****** 0 IN 0.B. 4.3 71.6 189.5	REES 1.B. 2.8 40.9 119.5	* O.B. * 2 * O.B	4-INCH CL TOPS OF- ! INCHES). I.B.	.ASS F ** * *	AND GRE ****** 3 I 0.B.	ATER ***** NCHES I.B.
			D+C HT.	i 2 3 4	PER ACRE 112 284 268 150	.6 6.2 13.2	33.0 63.3 70.0 72.8	5.6 15.8 22.3 26.5	ALL TF ****** 0 INC 0.B. 4.3 71.6 189.5 210.2	2.0 40.9 119.5	* O.B. * 2 * O.B	4-INCH CL TOPS OF- ! INCHES . I.B.	ASS F	AND GRE 12222222 3 I 0.B.	ATER ***** **CHES I.B.
			D+C HT.	i 2 3 4 5	PER ACRE 112 284 268 150 54	.6 6.2 13.2 13.1 7.4	33.0 63.3 70.0 72.8 74.4	5.6 15.8 22.3 26.5 29.3	ALL TF ****** 0 INC 0.B. 4.3 71.6 189.5 218.2 125.9	2.6 40.9 119.5 140.3 87.3	* O.B. * 2 * O.B	4-INCH CL TOPS OF- ! INCHES]. I.B. B 132.1 2 84.6	ASS 6	3 I 0.B. 164.0	ATER ***** NCHES I.B.
			D+C HT.	i 2 3 4	PER ACRE 112 284 268 150	.6 6.2 13.2	33.0 63.3 70.0 72.8	5.6 15.8 22.3 26.5	ALL TF ****** 0 INC 0.B. 4.3 71.6 189.5 210.2	2.0 40.9 119.5	* O.B. * 2 * O.B	4-INCH CL TOPS OF- ! INCHES]. I.B. B 132.1 2 84.6 6 31.8	ASS 6 ***	AND GRE 12222222 3 I 0.B.	ATER ***** NCHES I.B. 107.3 75.9 29.8
			D+C HT.	i 2 3 4 5 6	PER ACRE 112 284 268 150 54	.6 6.2 13.2 13.1 7.4 2.6	33.0 63.3 70.0 72.8 74.4 75.4	5.6 15.8 22.3 26.5 29.3 31.4	ALL TF ******* 0 IN(0.B. 4.3 71.6 189.5 210.2 125.9 45.4	2.6 40.9 119.5 140.3 87.3 32.4	* CR O.B. * 2 * O.F	4-INCH CL TOPS OF- ! INCHES]. I.B. B 132.1 2 84.6 6 31.8 7 7.0	# # # # # # # # # # # # # # # # # # #	i64.0	ATER ***** NCHES I.B. 107.3 75.9 29.8 6.8

% SURVIVAL= 99.9 MEAN CROWN RATIO = 64.8

		AV.		STEMS						r volume at for o.b. 1			
SI	AGE	D+C ht.	DBH	PER ACRE	BASAL AREA	CR	AV. HT.	0 IN 0.B.	CHES I.B.	* 2.1 * 0.B.	INCHES	* 3 IN	
30	20	41.6											
			1	49	.3	ii .7	8.6	2.5	1.2				
										707 0	244 4	740 7	270
													230 283
													220
													119
			8	7	2.4	53.4	47.7	62.1				60.8	45
			9	i	.4	53 .8	49.0	11.4	8.7	11.3	8.7	11.2	8
				892	74.8			1686.9	1180.3	1372.5	977.4	1280.1	908
EAN 1	D BH = 3	3.6		QUADRAT:	IC MEAN	DBH =3.93	W	EIBULL PA	RAMETERS	A = .55	B =3.4	18 C =2	. 2 2
				7 (1101	17 UAI =	00 2	¥	EAN CDOUN	DATTO -	AA 0			
~												OOT STUMP-	
~		AU.		STEMS				ALL T	REES	* 4-	-INCH CLAS	S AND GREA	TER
SI	AGE	AV. D+C	DBH	STEMS PER	BASAL	CR	AV.	ALL T	REES *******	* 4- FOR O.B. 1	INCH CLAS	S AND GREA	TER ****
SI	AGE	AV. D+C HT.	рвн	STEMS PER ACRE	BASAL AREA	CR	AV. HT.	ALL T	REES *******	* 4- FOR O.B. 1	-INCH CLAS	S AND GREA	TER **** CHES
SI 80	AGE	D+C	DBH	PER		CR		ALL T ***** 0 IN	REES ******** CHES	* 4- FOR O.B. 1 * 2 1	-INCH CLAS TOPS OF INCHES	S AND GREA -******** * 3 In	TER **** CHES
		D+C ht.	DBH 1	PER				ALL T ***** 0 IN 0.B.	REES ******** CHES I.B.	* 4- FOR O.B. 1 * 2 1	-INCH CLAS TOPS OF INCHES	S AND GREA -******** * 3 In	TER **** CHES
		D+C ht.	i 2	PER ACRE	AREA	57.0 69.0	6.0 11.8	ALL T ****** 0 IN 0.B. 12.8 36.7	REES ********F CHES I.B.	* 4- FOR O.B. 1 * 2 1	-INCH CLAS TOPS OF INCHES	S AND GREA -******** * 3 In	TER **** CHES
		D+C ht.	i	PER ACRE	AREA	57.0	HT.	ALL T ******* 0 IN 0.B.	REES ********FCHES I.B.	* 4- FOR O.B. 1 * 2 1	-INCH CLAS TOPS OF INCHES	S AND GREA -******** * 3 In	TER ***** CHES
	BO		BO 20 41.6 EAN DBH = 3.6	i 2 3 4 5 6 7 8	1 49 2 167 3 230 4 209 5 137 6 67 7 25 8 7 9 1	i 49 .3 2 i67 3.6 3 230 ii.3 4 209 i8.2 5 i37 i8.7 6 67 i3.2 7 25 6.7 8 7 2.4 9 i .4 B92 74.8 EAN DBH = 3.6 QUADRATIC MEAN	i 49 .3 ii.7 2 i67 3.6 38.7 3 230 ii.3 45.7 4 209 i8.2 48.9 5 i37 i8.7 50.7 6 67 i3.2 51.9 7 25 6.7 52.8 8 7 2.4 53.4 9 i .4 53.8 B92 74.8 EAN DBH = 3.6 QUADRATIC MEAN DBH =3.93	i 49 .3 ii.7 8.6 2 i67 3.6 38.7 22.9 3 230 ii.3 45.7 3i.7 4 209 i8.2 48.9 37.3 5 i37 i8.7 50.7 4i.2 6 67 i3.2 5i.9 43.9 7 25 6.7 52.8 46.0 8 7 2.4 53.4 47.7 9 i .4 53.8 49.0 B92 74.8 EAN DBH = 3.6 QUADRATIC MEAN DBH =3.93	i 49 .3 ii.7 8.6 2.5 2 i67 3.6 38.7 22.9 58.5 3 230 ii.3 45.7 3i.7 224.6 4 209 i8.2 48.9 37.3 402.7 5 i37 i8.7 50.7 4i.2 437.9 6 67 i3.2 5i.9 43.9 320.3 7 25 6.7 52.8 46.0 i66.9 8 7 2.4 53.4 47.7 62.1 9 i .4 53.8 49.0 ii.4 892 74.8 QUADRATIC MEAN DBH =3.93 WEIBULL PA	i 49 .3 i1.7 8.6 2.5 i.2 2 167 3.6 38.7 22.9 58.5 34.6 3 230 i1.3 45.7 31.7 224.6 i45.6 4 209 i8.2 48.9 37.3 402.7 275.5 5 i37 i8.7 50.7 41.2 437.9 310.6 6 67 i3.2 51.9 43.9 320.3 233.2 7 25 6.7 52.8 46.0 i66.9 i24.0 8 7 2.4 53.4 47.7 62.1 46.9 9 i .4 53.8 49.0 i1.4 8.7 892 74.8 WEIBULL PARAMETERS	i 49 .3 ii.7 8.6 2.5 i.2 2 i67 3.6 38.7 22.9 58.5 34.6 3 230 ii.3 45.7 3i.7 224.6 i45.6 4 209 i8.2 48.9 37.3 402.7 275.5 387.9 5 i37 i8.7 50.7 41.2 437.9 3i0.6 429.4 6 67 i3.2 5i.9 43.9 320.3 233.2 3i6.5 7 25 6.7 52.8 46.0 i66.9 i24.0 i65.6 8 7 2.4 53.4 47.7 62.1 46.9 6i.8 9 i .4 53.8 49.0 ii.4 8.7 ii.3 B92 74.8 WEIBULL PARAMETERS A = .55	i 49 .3 ii.7 8.6 2.5 i.2 2 i67 3.6 38.7 22.9 58.5 34.6 3 230 ii.3 45.7 3i.7 224.6 i45.6 4 209 i8.2 48.9 37.3 402.7 275.5 387.9 264.6 5 i37 i8.7 50.7 41.2 437.9 3i0.6 429.4 304.i 6 67 i3.2 5i.9 43.9 320.3 233.2 3i6.5 230.3 7 25 6.7 52.8 46.0 i66.9 i24.0 i65.6 i23.0 8 7 2.4 53.4 47.7 62.i 46.9 6i.8 46.7 9 i .4 53.8 49.0 ii.4 8.7 ii.3 8.7 B92 74.8 QUADRATIC MEAN DBH =3.93 WEIBULL PARAMETERS A = .55 B =3.4	i 49 .3 ii.7 8.6 2.5 i.2 2 i67 3.6 38.7 22.9 58.5 34.6 3 230 ii.3 45.7 3i.7 224.6 i45.6 4 209 i8.2 48.9 37.3 402.7 275.5 387.9 264.6 340.7 5 i37 i8.7 50.7 41.2 437.9 3i0.6 429.4 304.i 401.5 6 67 i3.2 5i.9 43.9 320.3 233.2 3i6.5 230.3 304.4 7 25 6.7 52.8 46.0 i66.9 i24.0 i65.6 i23.0 i6i.5 8 7 2.4 53.4 47.7 62.i 46.9 6i.8 46.7 60.8 9 i .4 53.8 49.0 ii.4 8.7 ii.3 8.7 ii.2 B92 74.8 VEIBULL PARAMETERS A = .55 B =3.48 C =2

X SURVIVAL= 100.0 MEAN CROWN RATIO = 61.7

			AV.		STEMS						VOLUME AB			
(10)	SI	AGE	D+C HT.	DBH	PER ACRE	BASAL AREA	CR	AV. HT.	0 INC			NCHES	* 3 INC	
1200	80	15	28.4			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			<u> </u>				
				í	194	1.1	29.4	6.0	7.8	3.6				
				2	411	9.0	61.5	16.3	106.6	61.1				
				3	330	16.2	68.5	22.8	237.9	150.3				
				4	157	13.7	71.5	26.9	223.3	149.2	211.4	140.7	174.9	114.
				5	49	6.7	73.2	29.7	115.6	80.2	112.3	77.B	101.6	69.
				6	10	2.0	74.3	31.8	35.3	25.2	34.7	24.7	3 2.7	23
				7	2	.5	75.0	33.3	9.8	7.2	9.7	7.1	9.4	6.
					1153	49.1			736.3	476.8	368.1	250.3	318.6	214
RITH.	MEAN	DBH = 2	2.6		QUADRAT	IC MEAN 1	DBH =2.79	WE	IBULL PA	RAMETERS	A = .55	B =2.2	7 C =1	94
					Y CUDI	VIVAL=	99.7	ME	AN CROWN	PATTO -	40 4			
'SO(10)) SI	- AGE	AV. D+C HT.	DBH	STEMS PER ACRE	BASAL AREA	CR	AV. HT.	ALL T	REES *******	OR O.B. T	INCH CLASS OPS OF NCHES	S AND GREA	TER **** CHES
	80	- AGE 20	D+C	DBH	PER		CR		ALL T ***** 0 In	REES ******** CHES	* 4- FOR O.B. T * 2 I	INCH CLASS OPS OF NCHES	S AND GREAT -********* * 3 IN	TER **** CHES
(SO(10)			D+C HT.	DBH 1	PER		CR 10.8		ALL T ***** 0 In	REES ******** CHES	* 4- FOR O.B. T * 2 I	INCH CLASS OPS OF NCHES	S AND GREAT -********* * 3 IN	TER **** CHES
			D+C HT.	1 2	PER ACRE	AREA	10.0 32.6	9.8 24.4	ALL T ****** 0 IN 0.B.	REES ******** CHES I.B.	* 4- FOR O.B. T * 2 I	INCH CLASS OPS OF NCHES	S AND GREAT -********* * 3 IN	TER **** CHES
			D+C HT.	1	PER ACRE 108 274 386	.6 6.0 15.0	18.8 32.6 40.1	9.8 24.4 33.1	ALL T ****** 0 IN 0.B. 6.0 101.4 310.3	REES ***********************************	* 4- FOR O.B. T * 2 I * O.B.	INCH CLAS	S AND GREA -******** * 3 IN * 0.B.	TER ***** CHES I.B.
			D+C HT.	1 2 3 4	PER ACRE 108 274 386 238	.6 6.0 15.0 20.8	18.8 32.6 48.1 43.5	9.8 24.4 33.1 38.5	ALL T ****** 0 IN 0.B. 6.0 101.4 310.3 472.0	REES ***********************************	* 4- FOR O.B. T * 2 I * O.B.	INCH CLAS OPS OF NCHES I B	S AND GREA-******** * 3 IN(* 0.8.	TER ***** CHES I.B.
			D+C HT.	1 2 3 4 5	PER ACRE 108 274 386 238 141	.6 6.0 15.8 28.8 19.2	18.8 32.6 48.1 43.5 45.4	9.8 24.4 33.1 38.5 42.2	ALL T ****** 0 IN 0.B. 6.0 101.4 310.3 472.0 461.3	2.9 60.2 201.8 323.6 327.6	* 4- FOR O.B. T * 2 I * O.B. 455.2 452.5	INCH CLAS OPS OF NCHES I.B. 311.3 321.0	S AND GREA-******** * 3 INC * 0.8. 401.7 424.0	TER ***** CHES I.B. 272. 299.
			D+C HT.	1 2 3 4 5 6	PER ACRE 108 274 386 238 141 66	.6 6.0 15.0 20.8 19.2	18.8 32.6 48.1 43.5 45.4 46.7	9.8 24.4 33.1 38.5 42.2 44.9	ALL T ****** 0 IN 0.B. 6.0 101.4 310.3 472.0 461.3 321.7	2.9 60.2 201.8 323.6 327.6 234.5	* 4- FOR O.B. T * 2 I * O.B. 455.2 452.5 318.0	INCH CLAS: OPS OF NCHES I.B. 311.3 321.0 231.6	S AND GREA-******** * 3 IN * 0.8. 401.7 424.0 306.1	TER ***** CHES I.B. 272. 299. 222.
			D+C HT.	1 2 3 4 5 6 7	PER ACRE 108 274 386 238 141 66 25	.6 6.0 15.8 20.8 19.2 13.0 6.7	18.8 32.6 48.1 43.5 45.4 46.7	9.8 24.4 33.1 38.5 42.2 44.9 46.8	ALL T ****** 0 IN 0.B. 6.0 101.4 310.3 472.0 461.3 321.7 169.7	2.9 60.2 201.8 323.6 327.6 234.5 126.2	* 4- FOR O.B. T * 2 I * O.B. 455.2 452.5 318.0 168.4	INCH CLAS: OPS OF NCHES I.B. 311.3 321.0 231.6 125.2	S AND GREA-******** * 3 INC * 0.8. 401.7 424.0 306.1 164.4	TER ***** CHES I.B. 272. 299. 222. 122.
			D+C HT.	1 2 3 4 5 6	PER ACRE 108 274 386 238 141 66	.6 6.0 15.0 20.8 19.2	18.8 32.6 48.1 43.5 45.4 46.7	9.8 24.4 33.1 38.5 42.2 44.9	ALL T ****** 0 IN 0.B. 6.0 101.4 310.3 472.0 461.3 321.7	2.9 60.2 201.8 323.6 327.6 234.5	* 4- FOR O.B. T * 2 I * O.B. 455.2 452.5 318.0	INCH CLAS: OPS OF NCHES I.B. 311.3 321.0 231.6	S AND GREA-******** * 3 IN * 0.8. 401.7 424.0 306.1	TER ***** CHES I.B. 272. 299. 222. 122. 53.
			D+C HT.	1 2 3 4 5 6 7 8	PER ACRE 108 274 386 238 141 66 25 8	AREA6 6.0 15.8 28.8 19.2 13.0 6.7 2.8	18.8 32.6 48.1 43.5 45.4 46.7 47.6 48.3	9.8 24.4 33.1 38.5 42.2 44.9 46.8 48.4	ALL T ***** 0 IN 0.B. 6.0 101.4 310.3 472.0 461.3 321.7 169.7 72.1 23.1	2.9 60.2 201.8 323.6 327.6 234.5 126.2 54.5	* 4- FOR O.B. T * 2 I * 0.B. 455.2 452.5 318.0 168.4 71.7 23.0	INCH CLAS: OPS OF	\$ AND GREA-******** * 3 INC * 0.8. 401.7 424.0 306.1 164.4 70.5	272 . 299 . 222 . 122 . 53 . 17
	80	20	D+C HT. 41.6	1 2 3 4 5 6 7 8	PER ACRE 108 274 386 238 141 66 25 8 2	.6 6.0 15.8 20.8 19.2 13.0 6.7 2.8 .9	18.8 32.6 48.1 43.5 45.4 46.7 47.6 48.3 48.8	9.8 24.4 33.1 38.5 42.2 44.9 46.8 48.4 49.6	6.0 101.4 310.3 472.0 461.3 321.7 169.7 72.1 23.1	2.9 60.2 201.8 323.6 327.6 234.5 126.2 54.5 17.7	* 4- FOR O.B. T * 2 I * 0.B. 455.2 452.5 318.0 168.4 71.7 23.0 1488.8	311.3 321.0 231.6 125.2 54.2 17.6	401.7 401.7 424.0 306.1 164.4 70.5 22.7	272 : 299 : 222 : 122 : 53 : 17 : 4
1200	80		D+C HT. 41.6	1 2 3 4 5 6 7 8	PER ACRE 108 274 386 238 141 66 25 8 2	.6 6.0 15.8 20.8 19.2 13.0 6.7 2.8 .9	18.8 32.6 48.1 43.5 45.4 46.7 47.6 48.3	9.8 24.4 33.1 38.5 42.2 44.9 46.8 48.4 49.6	6.0 101.4 310.3 472.0 461.3 321.7 169.7 72.1 23.1	2.9 60.2 201.8 323.6 327.6 234.5 126.2 54.5 17.7	* 4- FOR O.B. T * 2 I * 0.B. 455.2 452.5 318.0 168.4 71.7 23.0	311.3 321.0 231.6 125.2 54.2 17.6	401.7 401.7 424.0 306.1 164.4 70.5 22.7	272 . 279 . 222 . 122 . 53 . 17 . 986

			AV.		STEMS				****	CUBIC FOO	T VOLUME	ABOVE 0.2 Tops of	FOOT STUMP-	****
TSO(10)) SI	AGE	D+C	DBH		BASAL	CR	AV.	0 I	NCHES	* 2	INCHES	* 3 IN	ICHES
			HT.		ACRE	AREA		HT.	O.B.	I.B.	* 0.B	. I.B.	* 0.B.	I.B.
1500	80	10	10.4								-			
				•										
				i	360	2.0	5 5.7	5.9	14.4	6.6				
				2	210	4.6	68.5	11.8	41.0	22.8				
				3	16	.8	71.9	14.8	7.8	4.8				
					586	7.3			63.3	34.2		-		
ARITH.	MEAN	DBH =	i.4		QUADRAT	IC MEAN	DBH =1.51		WEIBULL P	ARAMETERS	A = .55	B = .	98 C =1	8 5
					7 61101	JIVAL=	400 0		MEAN COOK	N RATIO =	40.0			
					A JUN	ATAME-	100.8	'	HEHR CRUM	M KHITU =	8.00			
TSO(10)	SI	AGE	AV . D+C HT .	DBH	STEMS PER ACRE	BASAL AREA	CR	AV. HT.	ALL ****	TREES ******** NCHES	* FOR O.B.	4-INCH CLA TOPS OF INCHES	FOOT STUMP- SS AND GREA ******* * 3 IN * 0.8.	TER ***** ICHES
1500	80	15	28.4		<u> </u>			· ·····						
				i	210	i .i	25.7	6.4	8.8	4.1				
				2	565	12.3	59.7	16.8	150.4	86.5				
				3	444	21.8	67.1	23.2		_				
				4	158 28	13.8 3.8	70.3 72.0	27.3 30.1			215.9 64.9		179.2 58.8	
				6	2	.4	73.i	32.1			7.(58.8 6.6	40.5 4.7
					1407	53.3			786.9	500.7	287		244.6	162.9
ARITH.	MEAN	DBH = 2	2.5		QUADRATI	C MEAN	DBH =2.63	ţ	WEIBULL P	ARAMETERS	A = .55	B =2.5	16 C =2	. 23

TSO(10)	ST	AGE	AV. D+C	DBH	STEMS PER	BASAL	CR	AV.	*****	** * ****	OR O.B. T	OVE 0.2 FOO	*****	
.00.207	•	1106	HT.	<i>D D</i> 11	ACRE	AREA	CK	HT.	0.B.	ICHES I.B.	* 2.1 * 0.B.	NCHES 1		CHES I.B.
1500	80	20	41.6				# - 5						 	
				i	97	.5	10.0	10.9	5.9	2.8				
				2	331	7.2	26.7	25.8	128.5	76.7				
				3	421	20.7	34.6	34.3	441.3	287.8				
				4	324	28.3	38.3	3 9.6	65 8.9	452.5	636.3	435.9	563.7	382.6
				5	165	2 2.5	40.4	43.1	550.8	39 1.8	540.7	384.1	507.5	358.9
				6 7	57	11.2	41.7	45.7	282.6	206.2	279.4	203.8	269.2	195.9
					13	3.5	42.6	47.6	89.5	66.7	88.9	66.1	86.8	64.5
				8	2	.7	43.3	49.1	18.2	13.8	18.2	13.7	17.9	13.5
					1410	94.6			2175.7	1498.4	1563.5	1103.6	1445.1	1015.4
ARITH.	MEAN	DBH = 1	3.3		QUADRATI	IC MEAN I	DBH =3.51	u	EIBULL PA	RAMETERS	A = .55	B =3.06	C =2	.26
					% SUR	JIVAL=	95.3	H	EAN CROWN	RATIO =	33.0			

Farrar, Robert M., Jr. 1985. Predicting stand and stock tables from a spacing study in naturally regenerated longleaf pine.
U.S. Dep. Agric. For. Serv. Res. Pap. SO-219, 28 p. South.
For. Exp. Stn., New Orleans, LA.

Paper outlines a prediction system developed to calculate stand and stock tables for stands of natural longleaf pine 10 to 20 years old. The system also provides entry to other stand volume prediction and projection systems that usually start at age 20.

Additional keywords: Pinus palustrus; volume prediction; volume yields; crown ratio, survival prediction.

	-			
,				

-			

-			
			•